

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to

reach. Benjamin Mays
1

SISTEMAS EMBEBIDOS
Curso Básico

Entradas y Salidas Digitales

INTRODUCCIÓN

Un microcontrolador es el cerebro de un sistema
embebido, obƟene datos desde el entorno, los procesa
y genera señales para actuar sobre este. La interacción
del microcontrolador y el medioambiente se realiza
mediante pines, agrupados en los denominados
puertos (PORTX), los cuales pueden ser configurados
para funcionar como entradas o salidas.

Entre los microcontroladores PIC que serán uƟlizados
en el curso sobre sistemas embebidos se encuentra el
PIC16F1709, figura 1, el cual cuenta con 20 pines de los
cuales 17 pueden ser configurados como entradas o
salidas. Uno de los pines (RA3) es solamente entrada.

Figura 1. Pines en el PIC16F1709

La mayoría de los pines son agrupados en bloques
denominados puertos (PORT en inglés) y para el
microcontrolador bajo consideración tenemos:

PORTA: seis pines <RA5:RA0>

PORTB: cuatro pines <RB4:RB7>

PORTC: 8 pines <RC7:RC0>

En el diagrama de bloques del microcontrolador
PIC16F1709, ver figura 2, podemos observar la
presencia de los puertos mencionados, así como de
varios periféricos tales como un converƟdor analógico
digital (ADC, por sus siglas en ingles), temporizadores
como el TMR1, generador de señales de ancho de pulso
modulado (PWM) entre otros.

Figura 2. Diagrama de bloques PIC16F1709

Registros de Funciones Especiales (SFRs)

Los microcontroladores PIC presentan unos registros
con funciones especiales (SFR, por sus siglas en inglés)
para configurar el comportamiento de sus periféricos.

Un registro, en general, es una ubicación de memoria
pequeña y de alta velocidad en la arquitectura interna
del microcontrolador.

Los registros de funciones especiales son ubicaciones
de memoria uƟlizados para:

 Controlar y manejar la operación de varios módulos

periféricos del microcontrolador.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
2

 Observar el estado y leer datos desde estos
periféricos.

Algunas caracterísƟcas de los registros especiales
(SFRs):

 Propósito específico: Cada registro es diseñado

para controlar un periférico o función parƟcular.

 Mapeados en memoria: Los SFRs están ubicados en

una región específica del espacio de memoria del
microcontrolador, lo cual permite que el programa
pueda acceder a ellos y modificarlos.

 Control a nivel de bit: Muchos SFRs están

conformados de bits individuales, cada uno
controlando un aspecto específico de la operación
del periférico.

En esencia, los registros especiales proveen la interfaz
entre el núcleo del microcontrolador y su mundo
externo o periféricos internos, habilitando al
programador para personalizar y controlar el
comportamiento del disposiƟvo. Lo anterior se logra
escribiendo un 1 o un 0 en la posición de un bit
determinado.

La figura 3 muestra un listado parcial de los Registros
de Funciones Especiales del microcontrolador PIC16F
1709. En la parte izquierda podemos idenƟficar la
dirección de memoria donde están ubicados, por
ejemplo, el registro PORTA se encuentra en la dirección
00Ch, PORTB en 00Dh y PORTC en 00Eh.

PUERTOS: REGISTROS

En la figura 1 es presentada la asignación de pines del
PIC16F1709, PORTA en verde, PORTB en amarillo y
PORTC en azul. Para configurar el comportamiento de
los pines de los puertos, el microcontrolador cuenta
con 8 registros de 8-bits cada uno y sus nombres son
listados en la tabla 1.
En el PIC16F1709, la x puede ser A, B o C. Por el
momento consideraremos los registros TRISx, PORTx y
ANSELx.

Figura 3. Registros de Funciones Especiales en el PIC16F1709
(Listado parcial)

 Tabla 1: Registros Puertos Entrada/Salida

TRISx ODCONx
PORTx SLRCONx
LATx ANSELx
INLVLx WPUx

Registros TRISx

En el PIC16F1709 los bits de los registros TRISA, TRISB
y TRISC son uƟlizados para configurar si un pin de los
puertos correspondientes funcionará como entrada o
salida.

En la figura 4 se muestran los registros TRISX
correspondientes a los tres puertos del PIC16F1709.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
3

Figura 4. Bits de los registros TRISA, TRISB y TRISC

 Si a un bit del registro TRISx se le asigna el valor ‘1’

dicho pin será una entrada.

 Si a un bit del registro TRISx se le asigna el valor ‘0’,

dicho pin será una salida.

En los registros el bit menos significaƟvo está ubicado
en el extremo derecho (bit0) y el más significaƟvo en el
extremo izquierdo (bit7), ver figura 4.

Si para el funcionamiento deseado del sistema que
estamos desarrollando se requiere que los pines
<RC3:RC0> sean entradas y los pines <RC7:RC4> sean
salidas, debemos asignarles los valores adecuados a los
bits del registro TRISC. Para hacerlo es necesario uƟlizar
el operador adecuado del lenguaje C.

Operadores en C

Un operador es un símbolo que le indica al compilador
que debe realizar una determinada operación lógica o
matemáƟca. En un programa, los operadores son
uƟlizados para manipular datos o variables.

El lenguaje C soporta un conjunto de operadores los
cuales son clasificados, generalmente, como se
muestra en el siguiente listado.

 Operadores aritméƟcos
 Operadores relacionales
 Operadores lógicos
 Operadores bitwise

 Operadores de asignación
 Operadores condicionales

Los operadores son componentes esenciales en
cualquier lenguaje de programación y estos, al igual
que otros componentes, serán presentados en el
momento que su uso sea requerido para lograr la
funcionalidad de un sistema dado.

Operadores de asignación

Tal como lo sugiere su nombre, la principal
responsabilidad de los operadores de asignación en el
lenguaje C es asignar valores a variables. La asignación
se realiza ejecutando operaciones con operadores
aritméƟcos, o con operadores bitwise, y asignándole el
resultado a las variables.

 Los operadores aritméƟcos son usados para realizar

cálculos matemáƟcos con Ɵpos de datos numéricos
en C.

 Los operadores bitwise en C se refiere a aquellos

operadores que nos permiten manipular
individualmente los bits de un número binario.

Uno de los operadores en la categoría de asignación es
representado con el símbolo = y es llamado operador
de asignación ya que toma el valor a su derecha y lo
almacena en la variable a la izquierda.

Por ejemplo, para asignar el valor 0 o 1 a los bits del
registro TRISC podemos uƟlizar el operador de
asignación tal como se muestra a conƟnuación:

TRISC = 0b00001111; (TRISC=0x0F en hexadecimal)

El valor en binario, 00001111, es almacenado en el
registro TRISC. A los bits <RC7:RC4> se les asignó el
valor 0 (salidas) y a los bits <RC3:RC0> se les asignó el
valor 1 (entradas).

Los valores asignados a cada bit del registro TRISC son
mostrados en la figura 5.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
4

Figura 5. Configuración del registro TRISC

El diagrama de circuito de un semáforo básico,
uƟlizando un PIC17F1709, es mostrado en la figura 6.

Los pines RA0, RA1 y RA2 del microcontrolador deben
ser configurados como salidas y el pin RA3 como
entrada.

Figura 6. Diagrama de circuito de un semáforo

El valor de los bits puede ser seteado con las siguientes
asignaciones:

TRISAbits.TRISA0=0;
TRISAbits.TRISA1=0;
TRISAbits.TRISA2=0;
TRISAbits.TRISA3=1;

En las asignaciones anteriores cada bit es puesto a 0, o
a 1, de forma individual.

El registro TRISA del PIC16F1709 indica la existencia de
6 pines de los cuales RA3 es solamente entrada
(TRISAbits.TRISA3=1). Si consideramos que los pines

RA4 y RA5 serán salidas, debemos asignar al TRISA el
valor 00001000. Es decir:

TRISA=0b00001000; (en binario)

TRISA=0x08; (en hexadecimal)

Dado que no conocemos el principio de
funcionamiento de los diferentes componentes del
circuito, por el momento aceptaremos que:

 Si PB (pulsador) no es presionado en el pin RA3 se

aplican 0V (0 lógico).

 Si PB es presionado en el pin RA3 se aplican 5V (1

lógico).

En dependencia del nivel de voltaje en el pin RA3
(entrada) y del programa almacenado en la memoria
del microcontrolador, este generará los voltajes, y los
Ɵempos, en los pines RA0, RA1 y RA2 (salidas)
requeridos para el funcionamiento apropiado del
semáforo.

Registros ANSELx

Los registros ANSELA, ANSELB y ANSELC son uƟlizados
para definir si un pin será una entrada digital o una
entrada analógica. El funcionamiento es el descrito a
conƟnuación:

 Si a un bit del registro ANSELx se le asigna el valor

‘1’ el microcontrolador lo considerará como una
entrada analógica.

 Si a un bit del registro ANSELx se le asigna el valor

‘0’, el microcontrolador la considerará como una
entrada digital.

De los 18 pines de entrada/salida del microcontrolador
PIC16F1709, 12 pueden ser configurados como
entradas analógicas. En la hoja de datos (datasheet)
encontraremos la información correspondiente.

En la figura 7, en el registro ANSELC a los bits <RC7:RC4>
se les asignó el valor 1 y a los pines <RC3:RC0> el valor

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
5

0. Lo anterior significa que los pines de <RC7:RC4>
serán entradas analógicas y los pines de <RC3:RC0>
serán entradas o salidas digitales.

Figura 7. Configuración del registro ANSELC

Para lograr el comportamiento realizamos la asignación
mostrada a conƟnuación:

ANSELC=0b11110000; (ANSELC=0xF0, hexadecimal)

En la figura 7 podemos apreciar que todos los pines del
PORTC pueden ser configurados como entradas
analógicas.

En la figura 8 observamos que en el PORTA solamente
cuatro pines pueden ser configurados como entradas
analógicas (ANSA0, ANSA1, ANSA2 y ANSA4)

Figura 8. Registro ANSELA

Registros PORTx

La interacción del microcontrolador y el
medioambiente se realiza mediante pines, agrupados
en los denominados puertos (PORTX), los cuales
pueden ser configurados para funcionar como pines de
entrada o pines de salida.

Los valores de los pines de un puerto pueden ser leídos
o escritos. Conociendo el estado (1 o 0) de un pin dado
nos permite tomar decisiones para incidir sobre el
entorno. Los estados de los pines de salida pueden ser
cambiados para lograr el comportamiento deseado del
medio ambiente. Un ejemplo podría ser que cuando en
un pin dado se apliquen 5V (1 lógico) provoque que un
motor comience a girar. Lo úlƟmo se lograría
conectando el pin de salida del microcontrolador al

manejador (driver) adecuado del motor tal como se
muestra en la figura 9.

Figura 9. Motor DC conectado al pin RB4 (salida)

En el ejemplo #1 será presentada la herramienta básica
para la toma de decisiones en el lenguaje C.

En este punto del camino tenemos los elementos
suficientes para entender el manejo básico de las
entradas y salidas digitales.

Procederemos al desarrollo del ejemplo #1 el cual,
aunque es bastante simple, será de mucha uƟlidad para
lograr lo siguiente:

 Presentar los pasos que pueden seguirse para

desarrollar un sistema embebido basado en un
microcontrolador

 Presentar varios elementos básicos uƟlizados para

garanƟzar la funcionalidad de un sistema. Serán
presentados nuevos operadores, el enunciado
básico para la toma de decisiones en C y algunas
formas de implementar un lazo (loop) infinito.

PASOS PARA EL DESARROLLO DE UN SE

Los pasos, y el orden de aplicación, para desarrollar un
sistema embebido podrían ser los siguientes:

1. Descripción del proyecto
2. Diagrama de bloques del proyecto
3. Diagrama de circuito del proyecto

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
6

4. Descripción del hardware
5. Algoritmo del proyecto (solución)
6. Programa del proyecto
7. EfecƟvidad del programa

Es muy importante para minimizar el Ɵempo de
desarrollo y evitar la presencia de errores en el sistema
embebido seguir los pasos listados. En cada ejemplo
presentado será mostrado cada uno de los pasos.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
7

Ejemplo #1: Encendido de un Led

1. Descripción del proyecto

El documento de los requerimientos de un sistema
presenta una descripción detallada sobre lo que el
sistema o aplicación debe hacer, como este debe
comportarse, así como de las restricciones y otros
factores que este debe saƟsfacer. Dicho documento es
fundamental para asegurar que el sistema o aplicación
sea desarrollado para cumplir con las necesidades del
cliente. La elaboración de los requerimientos del
sistema es un aspecto fundamental en el proceso de
desarrollo de un sistema embebido.

Para el ejemplo #1, el párrafo siguiente sería suficiente
para describir que desea el cliente.

Se requiere desarrollar un sistema, uƟlizando un
microcontrolador PIC, que garanƟce el encendido de
un LED cuando se mantenga presionado un pulsador
(PB). El LED debe estar apagado si el pulsador no es
presionado. Para minimizar el tamaño, peso y costo del
sistema, el reloj del sistema deberá ser generado
uƟlizando el oscilador interno del microcontrolador.

Se deberá uƟlizar el compilador XC8 v2.36 de
Microchip.

2. Diagrama de bloques del proyecto

Un diagrama de bloques es una representación visual
de las principales partes, o funciones de un sistema, las
cuales son conectadas mediante líneas que muestran la
relación de los bloques. Es una representación de un
alto nivel de abstracción cuya finalidad es tener una
visión global del sistema sin tomar en cuenta los
detalles de su implementación.

La figura 10 muestra el diagrama de bloques para el
sistema de encendido del LED. PB representa el
pulsador y el círculo el LED.

Para el funcionamiento deseado del pulsador y del LED
se requieren algunos componentes que no son
presentados en el diagrama de bloques. El diagrama de

circuito del proyecto debe presentar todos los
componentes.

Figura 10. Diagrama de bloques del proyecto

3. Diagrama de circuito del proyecto

Un paso importante en el desarrollo de un sistema
embebido es contar con el diagrama del circuito del
proyecto, en el cual se muestran los diferentes
componentes de este y como están conectados. Este
diagrama juega un papel fundamental durante la
elaboración del algoritmo del proyecto, así como en la
codificación de la solución.

Para el sistema de encendido del LED el diagrama es el
mostrado en la figura 11. R1 es un resistor de Pull-down
el cual, en conjunto con PB1, garanƟza que al presionar
el pulsador en el pin RA4 se apliquen 5V (1 lógico). R2
es un resistor uƟlizado para limitar la corriente que
circulará a través del diodo emisor de luz (LED, por sus
siglas en inglés). Los valores permiƟdos de corriente
deben buscarse en la hoja de datos del LED.

Figura 11. Diagrama del circuito del proyecto

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
8

La plataforma de hardware uƟlizada es un
microcontrolador de 8-bit, el PIC16F1709. Desde luego,
para un proyecto tan sencillo este microcontrolador es
demasiado poderoso, lo recomendable es uƟlizar un
microcontrolador con los recursos necesarios para
garanƟzar el funcionamiento requerido. Durante la
trayectoria aprenderemos a seleccionar el
microcontrolador apropiado para una aplicación dada.

4. Descripción del Hardware

Es importante conocer cada uno de los componentes
que conforman el circuito del proyecto, entender las
leyes que rigen su comportamiento.

Por ejemplo, si nuestro sistema incorpora un LED
debemos revisar su hoja de datos para obtener
información de la corriente DC permiƟda a través del
componente y sobre el voltaje entre sus extremos
cuando está encendido. Dicha información juega un
papel fundamental a la hora de determinar la
resistencia del resistor limitador de corriente.

Aprovecharemos este ejemplo para introducir
brevemente los componentes que conforman el
circuito del proyecto, el resistor, el pulsador, el LED. El
microcontrolador fue considerado en el apartado
“Introducción a los microcontroladores”. Serán
presentadas dos configuraciones ampliamente
uƟlizadas en los sistemas embebidos para aplicar 5V o
0V a un pin dado.

A conƟnuación, es presentada una descripción breve
de los componentes del circuito del proyecto.

 Resistor

Uno de los disposiƟvos más comunes en un sistema
electrónico es el resistor el cual es un componente
diseñado para introducir una resistencia eléctrica
determinada entre dos puntos de un circuito.

La corriente eléctrica que circula a través de un resistor
está determinada por la ley de Ohm la cual establece
que la corriente que circula a través de este está
determinada por el voltaje aplicado entre sus extremos

y el valor de la resistencia del resistor. La figura 12
muestra un resistor conectado a una fuente de voltaje
de 5V.

Figura 12. Resistor conectado en serie con la fuente de voltaje

La corriente que circula a través del resistor se
determina uƟlizando la ley de Ohm tal como se muestra
en la ecuación siguiente:

𝐼 =
𝑉

𝑅
 Amperios

Un resistor Ɵene una resistencia de 1 Ohm si al aplicar
un voltaje de 1V entre sus extremos a través de este
circula una corriente de 1 Ampere.

El valor de la resistencia de un resistor puede ser
determinado uƟlizando un mulơmetro o uƟlizando una
tabla de colores como la mostrada en la figura 13.

Generalmente trabajamos con resistores que cuentan
con cuatro bandas de colores. En la tabla también es
mostrado como proceder si el resistor es 5 o 6 bandas.

Como podemos apreciar, para el caso de cuatro bandas,
el valor de la resistencia de un resistor es determinado
de la siguiente forma:

R = (Primer dígito) (segundo dígito) * mulƟplicador.

UƟlizando la tabla, determinar el valor de la resistencia
del resistor en la figura 12. Calcular el valor de la
corriente, I, en el circuito.

Primer dígito 1 (café)
Segundo dígito 0 (negro)
MulƟplicador 100 (rojo)

R=10 x 100 = 1000Ω

Es común escribir el valor de la siguiente manera:

R = 1kΩ

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
9

Figura 13. Código de colores para los resistores
Tomado de ….

La corriente a través del resistor será:

𝐼 =
5𝑉

1000𝛺
= 0.005 𝐴𝑚𝑝𝑒𝑟𝑖𝑜𝑠

Es decir, la corriente que circula a través del resistor es
igual a 5 mA (miliamperios).

 Pulsador (PB)

Un pulsador es un componente que permite o impide
el paso de la corriente eléctrica cuando se presiona. Al
igual que los resistores, los pulsadores suelen estar
presentes en los sistemas embebidos.

Podemos pensar en los pulsadores que aparecen en el
panel ubicado en el interior de un ascensor o los
pulsadores en un microondas.

En la figura 14 se puede apreciar que cuando el
pulsador PB no es presionado, figura 14.a, no hay
circulación de corriente a través del resistor.

En la figura 14.b, el pulsador está presionado lo que
garanƟza que se cierre el circuito permiƟendo el paso
de la corriente.

a) b)

Figura 14. Efecto de un pulsador en un circuito

Resistores de Pull-up y Pull-down

En los sistemas embebidos es común encontrar
combinaciones de resistor + pulsador como las
mostradas en la figura 15.

Figura 15. Resistores de Pull-down y Pull-up

 En el circuito mostrado a la izquierda, el voltaje en
el punto A, si el pulsador no es presionado, será 0
volƟos. Al presionar PB, el voltaje será 5 volƟos. Al
resistor se le denomina resistor de Pull-down.

 En el circuito de la derecha, el voltaje en el punto A,

si el pulsador no es presionado, será 5 volƟos. Al
presionar PB, el voltaje será 0 volƟos. Al resistor de
le denomina resistor de Pull-up.

Las configuraciones mostradas son muy úƟles cuando
es necesario aplicar 5 o 0 volƟos a otras partes de un
sistema garanƟzando que el punto donde será aplicado
el voltaje no quede flotante.

 Diodo Emisor de Luz (LED)

Otro disposiƟvo que frecuentemente aparece en los
sistemas electrónicos es el LED, una fuente de luz que
emite fotones cuando a través de este circula una
corriente eléctrica de muy baja intensidad.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
10

En la figura 16 es mostrado un circuito en el cual un LED
fue conectado en serie con el pulsador y el resistor. En
la figura 16.a el pulsador se encuentra en su estado
normal, no-presionado, lo cual impide el paso de la
corriente evitando que el LED sea encendido.

a)

b)

Figura 16. Circuito con diodo emisor de luz

En la figura 16.b el pulsador está presionado
permiƟendo el paso de la corriente y por consiguiente
que el LED sea encendido.

La ecuación para calcular la corriente que circulará a
través del resistor y del diodo LED (están conectados en
serie) se puede obtener aplicando la regla de Kirchhoff
para los voltajes la cual dice que la suma de las
diferencias de voltaje en un lazo es igual a cero:

Si aplicamos la regla al circuito mostrado en la figura 17,
obtendríamos lo siguiente:

+5V – VR – VD = 0

VR es el voltaje entre los extremos del resistor

VD es el voltaje entre los extremos del LED

Figura 17. Voltajes en los componentes de un circuito

Asumimos que el voltaje entre los extremos del
pulsador es cero.

La corriente que circula a través del resistor es la misma
que circula a través del diodo, por lo tanto, VR = I*R y
tomando en consideración dicha relación obtenemos:

𝐼 =
5𝑉 − 𝑉஽

220𝛺

Para garanƟzar el funcionamiento apropiado del LED es
fundamental revisar la hoja de datos (data sheet) de
este, ahí encontraremos el valor de VD entre otros
datos. Generalmente es indicado el voltaje VD
relacionado con la corriente a través del LED y se debe
determinar el valor de la resistencia del resistor para
obtener la corriente requerida.

Si al revisar la hoja de datos encontramos que el voltaje
entre los extremos del LED es de 2V (VD) al uƟlizar la
ecuación para determinar la corriente a través del LED
encontramos:

𝐼 =
5 − 𝑉஽

220
=

5 − 2

220
= 13.6 𝑚𝐴

Al igual que el pulsador, el LED puede estar en uno de
dos posibles estados, encendido (ON) o apagado (OFF).

El concepto de estado es importante cuando
modelamos el comportamiento de un sistema
uƟlizando una máquina de estado finito. El anexo A
presente información sobre está herramienta de
modelación.

Un LED puede ser conectado a un microcontrolador en
dos formas:

 El modo current – sourcing: el ánodo del LED es

conectado, a través del resistor, al pin de salida. El
cátodo es conectado a Ɵerra. Ver figura 17.

 El modo current – sinking: el ánodo del LED es

conectado a la fuente de alimentación, a través del
resistor, y el cátodo es conectado al pin del
microcontrolador. Ver figura 18.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
11

Figura 17. LED conectado en modo current-sourcing

Figura 18. LED conectado en modo current-sinking

5. Lenguaje Descripción del Programa (PDL)

Antes de comenzar a escribir el código de una solución
es recomendable contar con un algoritmo de esta ya
que esto facilita considerablemente el proceso. Se
puede uƟlizar un diagrama de flujo , seudocódigo o una
máquina de estados finitos entre otras alternaƟvas.

En el anexo A es presentada una descripción breve de
las alternaƟvas mencionadas.

En el curso básico será uƟlizado el Lenguaje de
Descripción de Programa (PDL, por sus siglas en inglés).

Un PDL es un texto Ɵpo inglés de formato libre que
describe el flujo de control y datos en un programa. El
PDL no es un lenguaje de programación, es una
herramienta que ayuda al programador a pensar sobre
la lógica del programa antes de escribirlo. Es una
colección de palabras claves que ayudan al
programador en la descripción de la operación de un
programa en una manera lógica y gradual.

Cada descripción de programa PDL debe ser iniciado
con la palabra START y terminado con la palabra END.
Las palabras claves en un PDL deben ser resaltadas en
negritas para hacer el PDL más claro. También es una

buena prácƟca dejar un espacio entre las palabras
claves y los enunciados del programa para mejorar la
legibilidad del PDL.

Los enunciados DO -- ENDDO deben ser usados cuando
se requiere crear iteraciones, o lazos condicionales e
incondicionales en un programa. Cada enunciado DO
debe ser terminado con la palabra clave ENDDO.

Otras palabras clave, tales como FOREVER o WHILE,
pueden ser uƟlizadas después del enunciado DO para
indicar un lazo infinito o un lazo condicional,
respecƟvamente.

IF, THEN, ELSE, y ENDIF deben ser uƟlizadas para el
cambio condicional del flujo de control en un
programa. Cada palabra clave IF debe ser terminada
con un THEN, y cada bloque IF debe ser terminado con
la palabra clave ENDIF.

PDL del ejemplo #1.

START
 Configurar RA0 como salida
 Configurar RA4 como entrada digital
 Inicializar PORTA en cero
 Configurar oscilador interno a 4MHz
 DO FOREVER
 IF PB1 es presionado THEN
 Encender LED
 ELSE
 Apagar LED
 ENDIF
 ENDDO
END

La primera parte del PDL, entre START y DO FOREVER,
es uƟlizada para definir las variables y para configurar
los periféricos que serán uƟlizados.

En el ejemplo #1 son uƟlizados dos pines del PORTA y
el oscilador interno el cual debe ser configurado a
4MHz.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
12

El estado del pulsador PB1 (presionado o no
presionado) debe ser indagado de forma repeƟƟva e
indefinida. En dependencia del resultado será
ejecutado un bloque de código. Lo anterior es indicado
entre las palabras clave DO FOREVER – ENDDO.

La decisión es tomada uƟlizando las palabras clave IF-
THEN-ELSE-ENDIF.

Si el pulsador PB1 está presionado entonces se debe
encender el LED, de lo contrario el LED deberá
permanecer apagado.

La escritura del programa se realiza a parƟr del PDL y se
simplifica considerablemente como veremos durante
nuestra travesía. El algoritmo es muy importante para
obtener retroalimentación del cliente y garanƟzar que
los requerimientos no presenten ambigüedad alguna.

6. Programa del proyecto

El firmware del proyecto es desarrollado uƟlizando el
ambiente integrado de aprendizaje MPLAB X IDE y el
compilador XC8. Ambos pueden ser descargados desde
la página de Microchip sin costo alguno.

Los pasos para seguir son listados a conƟnuación.

1. Hacer click en el ícono de MPLAB X IDE
2. Seleccionar standalone Project
3. Seleccionar el microcontrolador a uƟlizar
4. Seleccionar el compilador XC8 (versión x.xx)
5. Nombrar el proyecto y salvarlo
6. Agregar new main.c y renombrarlo main.c

En la ventana del editor aparecerá lo mostrado en la
figura 19. Pronto la función de cada uno de los
elementos mostrados será explicada.

Antes de iniciar la edición del programa requerido para
garanƟzar el comportamiento deseado del diodo LED,
serán presentados los elementos que generalmente
aparecen en un programa escrito para un
microcontrolador PIC usando el compilador XC 8.

Figura 19. Área para la edición del programa

Del algoritmo al código

Un programa está conformado por una serie de
elementos que cumplen una función y ocupan un lugar
en este. Para los microcontroladores PIC es necesario,
entre otras cosas, definir las palabras de configuración,
definir las variables, inicializar periféricos, describir y
definir funciones, escribir el código del cuerpo del
programa.

En la figura 20 se muestra un formato con los
principales elementos que conforman un programa
escrito para un PIC con el compilador XC8. El formato
debe ser considerado como una guía.

En el formato podemos apreciar que en la parte
superior del programa podemos incluir información
sobre el proyecto. Elementos importantes en esta parte
son la descripción del proyecto, el autor, el
microcontrolador uƟlizado, así como el compilador y su
versión. La versión del programa es un dato de mucha
importancia.

A conƟnuación, será presentada una descripción breve
de los diferentes elementos considerando el papel que
juegan en el programa. Iniciaremos con las palabras de
configuración (CONFIGURATION WORDS) las cuales
Ɵenen una importancia vital para el funcionamiento del
disposiƟvo.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
13

Figura 20. Formato elementos de un programa

PALABRAS DE CONFIGURACIÓN

Los microcontroladores PIC Ɵenen registros que
conƟenen los bits de configuración. Estos bits
especifican la operación del disposiƟvo tal como el
modo del oscilador, el perro guardián (watchdog),
modo de programación y protección del código. Los
bits deben ser seteados correctamente de lo contrario
podría tener una falla en la ejecución del código o un
microcontrolador que no funciona.

En lo que respecta a las palabras de configuración
(CONFIGURATION WORDS), 2 en el PIC16F1709,
tendríamos los siguientes registros:

Figura 21. Palabras de configuración del PIC16F1709

La configuración del disposiƟvo consiste en poner a 1 o
0, en dependencia del comportamiento deseado, los
bits de las Palabras de Configuración las cuales, en el
caso del PIC16F1709, son CONFIG1 y CONFIG2.

La directiva #pragma config permite que los bits de
configuración del dispositivo sean especificados.

El significado de los valores asignados a CONFIG1 y
CONFIG2 será explicado en el desarrollo de la unidad
correspondiente.

Es importante señalar que el programa no debe
mostrar errores o advertencias como resultado de la
compilación. Se recomienda la compilación del
programa a medida que las instrucciones son
incorporadas. De esa forma es más fácil percatarse
temprano si hay algún error en el código e idenƟficar la
causa. Lo anterior garanƟza la funcionalidad del
sistema y minimiza el Ɵempo de desarrollo de este.

ARCHIVOS DE CABECERA (HEADER FILES)

Los archivos de cabecera (header files) en lenguaje C
conƟenen un conjunto de funciones de librería
estándar predefinidas y otras enƟdades. Dichos
archivos son incluidos en un programa usando la
direcƟva #include la cual es usada para incluir los
contenidos de otro archivo en el archivo fuente actual.
Por ejemplo, para incluir los archivos asociados a las
funciones que integra el compilador.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
14

El compilador XC8 incluye un archivo de cabecera
(header file) que es generalmente incluido en cada
archivo fuente que escribamos. El archivo es xc.h y es
un archivo de cabecera genérico que incluirá los
archivos de cabecera de otros disposiƟvos, así como su
arquitectura.

El archivo de cabecera <xc.h> consiste en Ɵpos, macros
y funciones específicas para el disposiƟvo. Incluye
archivos de cabecera específicos para el disposiƟvo que
también proveen acceso a los registros de funciones
especiales. Es incluido en cada programa escrito
usando el compilador XC 8.

MACROS

En lenguaje C los macros son herramientas poderosas
que le permiten al desarrollador definir porciones de
código que pueden ser reuƟlizables. Los macros son
definidos usando direcƟvas del preprocesador y son
usadas principalmente para generación y susƟtución de
código. Ellos presentan una alternaƟva para escribir
código compacto y eficiente, mejorando la legibilidad y
mantenimiento de los programas. Los macros son
definidos usando la direcƟva #define.

La sintaxis para definir un macro es la siguiente:

#define MACRO_NAME value

Cuando el compilador de C encuentra un macro en el
código fuente, susƟtuye directamente el macro con el
valor o expresión especificada. Los macros pueden ser
uƟlizados para realizar susƟtuciones textuales simples
o para definir bloques de código complejos.

Si queremos legibilidad en nuestro programa podemos
uƟlizar la direcƟva #define para asignarle un nombre a
un pin parƟcular. Por ejemplo, en el diagrama del
circuito del proyecto idenƟficamos que el pulsador está
conectado al pin RA4 y el LED, a través del resistor, está
conectado al pin RA0. Usando la direcƟva #define
podemos, en vez de referirnos a los pines, referirnos a
los componentes conectados a ellos.

De igual forma podríamos asignarle a la palabra ON el
valor 1 y a la palabra OFF el valor 0.

DECLARACIÓN DE FUNCIONES

En lenguaje C, una función es un bloque de código que
realiza una tarea específica y que puede ser invocada
desde cualquier parte del programa las veces que sea
necesario. Las funciones son un elemento de
construcción fundamental en C y permiten, entre otras
cosas, la modularidad y reusabilidad del código.

La declaración de una función es un enunciado que
define las caracterísƟcas esenciales de una función.
Define su nombre, el Ɵpo de valor de retorno y el Ɵpo
de cada uno de sus parámetros. La declaración de una
función le indica al compilador que hay una función con
el nombre dado definida en algún lugar del programa.
La sintaxis para la declaración de una función en C es:

Return_type FuncƟon_name (Parameters –
separated by comas)

El Ɵpo de retorno (return type) de la función indica que
Ɵpo de valor es retornado una vez que la función ha
sido ejecutada.

No todos los elementos mostrados en el formato
formarán parte de un programa. Por ejemplo, en el
ejemplo #1 no requiere el uso de funciones y dicho
elemento no aparecerá en el programa.

DECLARACIÓN DE VARIABLES GLOBALES

Variables en C

Una variable no es más que el nombre de una localidad
de memoria que uƟlizamos para almacenar datos. En C
el valor almacenado en la variable puede ser cambiada
durante la ejecución del programa.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
15

En dependencia de su alcance (scope) las variables
poder ser clasificadas como locales o globales. El
alcance se refiere a la visibilidad y vida de una variable
en el programa.

 Variable local: es visible solo en la función donde

fue declarada.

 Variable global: es visible en todo el programa.

Entender el alcance de una variable nos ayuda a
mantener la integridad de los datos y a prevenir
conflictos potenciales en el programa.

Las variables deben ser declaradas e inicializadas antes
de ser uƟlizadas. La declaración le indica al compilador
que existe una variable con el nombre y Ɵpos
especificados de forma que este pueda conƟnuar con
su trabajo de compilación sin necesidad de más
detalles acerca de la variable.

En el ejemplo #1 no son uƟlizadas variables globales y
ese elemento no formará parte del programa. En
ejemplos posteriores veremos cómo se describen e
inicializan este Ɵpo de variables y su impacto en el
programa.

RUTINA DE SERVICIO A LA INTERRUPCIÓN

La ruƟna de respuesta a la interrupción (ISR, por sus
siglas en inglés) es una función que es ejecutada
cuando se produce una interrupción. En el compilador
XC8 se uƟliza el especificador interrupt para indicar que
la función es una ISR. La estructura uƟlizada es
mostrada a conƟnuación:

El código que será ejecutado en respuesta a la
interrupción se escribe entre las llaves.

En el ejemplo #1 no se uƟlizan interrupciones, por lo
tanto, este elemento no aparecerá en el programa. Las
interrupciones serán estudiadas en la unidad V.

FUNCIÓN PRINCIPAL (main funcƟon)

La función principal es el punto de entrada en un
programa en C y en este solo debe exisƟr una función
main(). Los programas en C comienzan su ejecución
llamando a la función main().

void main(void)
{ —> indica el inicio de la función main ()

La primera línea de código en la función main() es la
declaración de variables. En C todas las variables
deben ser declaradas antes de que sean uƟlizadas.

} —> indica el fin de la función main ()

En el seno de la función principal tenemos la definición
de variables locales, la inicialización de los periféricos y
el cuerpo del programa.

 DEFINICIÓN DE VARIABLES LOCALES

En el ejemplo #1 no son uƟlizadas variables locales y
ese elemento no formará parte del programa.

 INICIALIZACIÓN

En la parte correspondiente a la inicialización se
configuran los periféricos que serán uƟlizados en la
solución. Para el ejemplo #1 solamente serán uƟlizados
dos pines del PORTA, RA4 como entrada y RA0 como
salida. En esta parte del programa aparecerá todo lo
descrito entes del DO FOREVER en el PDL.

La configuración de los bits indicados se logra mediante
las siguientes asignaciones:

En la descripción se indica el uso del oscilador interno
configurado a 4MHz. Eso es logrado asignando el valor
indicado al registro de control del oscilador (OSCCON,
por sus siglas en inglés). Los bits del registro OSCCON
son mostrados en la figura 22.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
16

Figura 22. Registro OSCCON, PIC16F1709

En el PIC17F1709 el reloj del sistema puede ser
generado por fuentes internas o externas lo cual es
determinado poniendo a 0 o 1 los bits
correspondientes en el registro OSCCON (SCS<1:0>).

La frecuencia del oscilador interno es determinada
poniendo a 0 o 1 los bits correspondientes en el registro
OSCCON (IRCF<3:0>).

Para el ejemplo #1 se requiere trabajar con el oscilador
interno configurado a 4MHz. La siguiente asignación
garanƟza dicho requerimiento.

Nada más que inicializar en el ejemplo #1.

 CUERPO DEL PROGRAMA

En el caso del ejemplo #1, se requiere que el LED sea
encendido cuando se presiona el pulsador PB1 y sea
apagado cuando no este presionado.

Analizando el algoritmo del ejemplo #1, idenƟficamos
dos acƟvidades que deben ser realizadas:

1. El estado del pulsador (PB1) debe ser determinado,

presionado o no presionado, y tomar una decisión
respecto al estado del LED (encender o apagar).

2. El estado del pulsador debe ser interrogado
repeƟda e indefinidamente.

Toma de decisiones en C

El lenguaje C incluye una serie de herramientas
poderosas denominadas “Enunciados de Control”.
Dichos enunciados permiten controlar el flujo de
ejecución en los programas, permiƟendo
comportamientos más complejos y dinámicos más allá

de una ejecución lineal. Dos enunciados de control en
C son:

 Enunciados para la toma de decisiones: ejecutan un

bloque de código parƟcular basado en ciertas
condiciones. Los enunciados primarios para la toma
de decisiones en C son el if, if-else, y switch.

 Enunciados para la ejecución de lazos (loops):
usados para ejecutar repeƟdamente un bloque de
código hasta que una condición dada es cumplida.
C provee tres Ɵpos de lazos: for, while, y do-while.

El enunciado (statement) más simple para tomar
decisiones es el if. La sintaxis es la siguiente:

if(expresión)
{
 statements;
}

Siguiente instrucción;

 El enunciado if evalúa la expresión entre los

paréntesis. Si la evaluación es verdadera las
instrucciones en el cuerpo del if son ejecutadas.

 Si la evaluación es falsa las instrucciones en el

cuerpo del if no son ejecutadas y el programa salta
a Siguiente instrucción.

Las expresiones son escritas con la ayuda de
operadores. Por ejemplo, usando el compilador XC8,
podríamos escribir para el circuito de la figura 9:

El símbolo == es un operador relacional y Ɵene el
significado “igual a”. El código anterior le indica al
compilador que:

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
17

 Si el valor en el pin RA4 es igual a 1 (5V) entonces el
pin RA0 debe ser puesto a 1 (5V). Dado que el LED
está conectado, por medio del R2, al pin RA0 al
aplicar a dicho pin 5V hará que el LED se encienda
(ON).

 Si el valor en el pin RA4 es 0V la instrucción entre

paréntesis no debe ser ejecutada.

El enunciado básico if puede ser extendido para tener
mayor flexibilidad. La ampliación genera el enunciado

if-else cuya sintaxis es la siguiente:

if(expresión)
{
 Statement1;
}
else
{
 Statement2;
}

 Si la expresión es verdadera, el código en el cuerpo

del enunciado if es ejecutado y el código en el
cuerpo del enunciado else obviado (no ejecutado).

 Si la expresión es falsa, el código en el cuerpo del

enunciado else es ejecutado y el código en el
cuerpo del if es obviado (no ejecutado).

Por ejemplo, usando el compilador XC8, podríamos
escribir para el circuito del ejemplo #1:

El código anterior le indica al compilador que:

 Si el valor en el pin RA4 es igual a 1 (5V) entonces el

pin RA0 debe ser puesto a 1 (5V). Dado que el LED

está conectado, por medio del R2, al pin RA0 al
aplicar a dicho pin 5V hará que el LED se encienda
(ON).

 Si el valor en el pin RA4 es 0V ejecutar el código en

el enunciado else, es decir, poner a 0 el pin RA0.

En el ejemplo #1, el estado de RA4 debe ser
monitoreado de forma repeƟda e indefinidamente.

Podemos uƟlizar uno de los enunciados uƟlizados
para ejecutar repeƟdamente un bloque de código.

Por ejemplo, el while-loop. La sintaxis general es:

while(condición)
{
 Cuerpo del loop;
 Incrementar o decrementar;
}

El loop while consiste en una condición de control y
se ejecuta mientras la condición sea verdadera. El
código en el cuerpo del loop while es ejecutado
después que la condición es ejecutada.

 La condición para conƟnuar en el lazo es

evaluada al inicio. Si el resultado de la
evaluación es falso no se ejecutan el código
entre las llaves. Mientras el resultado de la
evaluación sea verdadero el código entre las
llaves es ejecutado repeƟdamente.

 Si deseamos que un bloque de código sea

ejecutado repeƟdamente de forma indefinida
podemos uƟlizar cualquiera de las siguientes
alternaƟvas:

 while(1)
 {
 Statement1;
 Statement2;
 }
 while loop

 for(;;)
 {
 Statement1;
 Statement2;
 }
 for loop

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
18

Código del cuerpo de la función principal:

La condición siempre será verdadera (1), y el código
entre las llaves se ejecutará indefinidamente.

DEFINICIÓN DE FUNCIONES

La definición de una función muestra el nombre de la
función, el número y Ɵpo de parámetros que espera
recibir, y su Ɵpo de retorno. La definición de la función
también incluye el cuerpo la función con la declaración
de las variables locales, y los enunciados que
determinan que hace la función. La sintaxis es la
siguiente:

Return_type FuncƟon_name(Parameters – separated
by comas)
{
 Código;
}

El bloque de código entre las llaves es llamado cuerpo
de la función (funcƟon body).

En el ejemplo #1 no se uƟlizan funciones y el elemento
FUNCTION DEFINITION no aparecerá en el programa.

A conƟnuación, el programa es mostrado por partes.

En la primera parte aparecen, en el orden listado, las
palabras de configuración, el archivo de cabecera
<xc.h> y los macros uƟlizados para definir símbolos que
darán mayor legibilidad al programa. Con las
definiciones mostradas en vez de escribir, en el código
en el cuerpo del programa, PORTAbits.RA4 podemos

escribir PB1. Algo similar con PORTAbits.RA0, podemos
escribir simplemente LED.

La segunda parte conƟene la inicialización, en este caso
de los registros del PORTA y del registro OSCCON.

La tercera parte conƟene el cuerpo del programa y
conƟene el código que será ejecutado repeƟƟva y
conƟnuamente.

Figura 23. Código para el encendido de un LED

Una vez finalizada la edición del código se procede a su
compilación. El resultado no debe mostrar errores
(errors) o advertencias (warnings).

En la figura 24 es presentado el resultado de la
compilación del programa correspondiente al ejemplo

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
19

#1. Como se puede apreciar no se reportan errores o
advertencias. Si estuvieran presentes, el compilador
nos brinda la información necesaria para idenƟficar
dónde se comeƟó el error o el porqué de las
advertencias.

El compilador uƟlizado es el XC8, versión 2.36.

Figura 24. Resultado de la compilación con XC8

Se debe evitar la presencia de advertencias (warnings)
ya que, aunque el programa al inicio puede funcionar
con el Ɵempo pueden aparecer bugs que afectarán su
buen funcionamiento.

 EfecƟvidad del programa

Una vez que el programa ha sido editado y compilado
es necesario verificar la efecƟvidad de este. Existen
diferentes alternaƟvas, unas basadas en soŌware como
son los simuladores tales como PROTEUS y otras
basadas en hardware, como son las tarjetas de
desarrollo como el EASYPIC o el sistema mismo
ensamblado en una tabla de nodos.

En el desarrollo del curso para verificar la efecƟvidad de
los programas escritos será uƟlizado PROTEUS en
primer lugar y posteriormente la tarjeta de desarrollo
EASYPIC v7. En ciertos momentos, con el fin de
ejemplificar algunos detalles respecto a la opƟmización
del código, uƟlizaremos el simulador que incorpora
MPLAB X IDE.

Por lo tanto, las tres alternaƟvas son:

 Suite PROTEUS
 EASYPIC V7
 Simulador incorporado en MPLAB X IDE

En el anexo D serán presentados los aspectos básicos
de las herramientas mencionadas.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
20

7.1 Simulación con PROTEUS

El poder simular el circuito del proyecto antes de
ensamblarlo en una tabla de nodos o en un circuito
impreso es fundamental tanto para garanƟzar la
efecƟvidad del sistema como para reducir el Ɵempo de
desarrollo.

La simulación permite probar nuestro sistema mientras
obtenemos los componentes requeridos para
implementar la solución. También permite realizar
experimentos, por ejemplo, del Ɵpo “qué pasa sí?” lo
que permite conocer la respuesta del sistema ante
determinadas condiciones.

PROTEUS nos permite la simulación de un circuito
mediante soŌware y lo primero que debemos hacer es
construir el esquemáƟco del circuito. PROTEUS cuenta
con una amplia librería con los modelos de cientos de
componentes entre los que destacan los
microcontroladores, plataforma de hardware uƟlizada
en el curso para implementar un sistema embebido.

La figura 25 muestra el esquemáƟco, elaborado en
PROTEUS, para el sistema de encendido del LED. Al
realizar la simulación podemos observar que mientras
no se presione PB1 el LED no es encendido.

Figura 25. Esquema elaborado en PROTEUS

Los esquemáƟcos para cada uno de los ejemplos
presentados en el curso estarán disponibles para que
los estudiantes puedan realizar la simulación sin tener
que inverƟr Ɵempo en la creación de este lo cual les
permiƟrá concentrarse en la elaboración del código.

Para realizar la simulación uƟlizando PROTEUS:

1. Hacer click en el ícono de PROTEUS
2. Abrir el esquemáƟco correspondiente al ejemplo

bajo estudio.
3. Hacer click derecho sobre el microcontrolador y en

editar propiedades:

 Ajustar la frecuencia a 4MHz
 Cargar el archivo HEX ubicado en la carpeta del

proyecto.
4. AcƟvar la simulación, ver figura 25.

Figura 25. Inicio de la simulación en PROTEUS

Mientras la simulación esté acƟva, podemos manipular
los valores o el estado de algunos de sus componentes
y observar la reacción del sistema.

En el esquema del ejemplo #1, una vez inicializada la
simulación, podemos presionar el pulsador PB1 y
observar la respuesta del sistema. Si todo está correcto,
el LED será encendido mientras PB1 este siendo
presionado, es decir, el LED permanecerá en su estado
encendido (ON), tal como se muestra en la figura 26.

Si dejemos de presionar a PB1, el LED pasar a su estado
apagado (OFF).

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
21

Figura 26. Simulación de un circuito en PROTEUS

El resultado sería el mismo si en el programa
cambiamos el código:

por el código:

Es importante destacar que los modelos presentados
por PROTEUS no presentan los pines del
microcontrolador tal y como estos están dispuestos en
el disposiƟvo real. Ver figura 27.

PIC16F1709

Asignación de pines

Modelo PIC16F1709
PROTEUS

Figura 27. PIC16F1709 y su modelo en PROTEUS

Debemos tener presente dicha situación a la hora de
trazar las pistas del circuito impreso (PCB, por sus siglas
en inglés).

El esquema para la simulación en PROTEUS y el video
de la simulación están en:

 El esquema para el ejemplo #1 encuentra en

UNIDADII – PROTEUS – ESQUEMAS – UII_EJ_1.

 El video para el ejemplo #1 se encuentra en

UNIDADII – PROTEUS – VIDEOS – UII_EJ_1

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
22

7.2 Verificación con el EASYPIC v7

A diferencia del simulador del MPLAB X IDE y de
PROTEUS, el EASYPIC v7 es una tarjeta de desarrollo
que nos permite verificar la efecƟvidad del programa
uƟlizando componentes reales. La versión uƟlizada en
el curso soporta más de 350 microcontroladores PIC de
8-bit los cuales van desde 8 pines hasta 40 pines.

En la figura 28, el contorno amarillo encierra las bases
que permiten el uso de los diferentes
microcontroladores. El empaquetado de los
microcontroladores debe ser PDIP.

Figura 28. Más de 350 microcontroladores PICs

El EASYPIC v7 cuenta con una serie de switches
mediante los cuales se puede configurar la tarjeta para
que funcione apropiadamente en dependencia del
número de pines del microcontrolador o en
dependencia de si se uƟlizará un cristal o el oscilador
interno de este.

En la figura 29 están remarcados algunos de los
recursos, integrados en el EASYPIC v7, que facilitan la
verificación de la efecƟvidad de un programa.

Entre otros recursos destacan los siguientes:

 Pulsadores (PushbuƩon)
 Diodos emisores de luz (LED)
 Dip Switch para cada puerto
 Potenciómetros para generar señales analógicas (2)
 Sensores de temperatura (DS18B20, LM35)
 Siete segmentos (7 SEG)

 Pantalla de cristal líquido (LCD)
 Interfaz para comunicación UART y USB

Figura 29. Recursos en el EASYPIC v7

Para ejecutar el programa uƟlizando EASYPIC v7 seguir
los siguientes pasos:

1. Configurar el EASYPIC v7 de acuerdo con el número

de pines del microcontrolador PIC17F1709 y
tomando en cuenta que será uƟlizado el oscilador
interno.

2. Colocar el microcontrolador en socket

correspondiente.

3. Conectar el EASYPIC v7 a la computadora mediante

el cable USB y energizar la tarjeta. Deberá
encenderse el led amarillo (LINK)

4. Abrir el mikroProg Suite for PIC y cargar el archivo

.hex (LOAD) correspondiente al ejemplo #1.

5. Grabar(WRITE) el archivo .hex en el

microcontrolador.

6. Proceder con la verificación del funcionamiento del

programa.

En el ejemplo #1, encendido de un LED, debemos
presionar el pulsador (PushbuƩon) eƟquetado como

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
23

RA4 y, si el programa está correcto, el LED eƟquetado
RA0 deberá encenderse. Ver figura 29.

Figura 29. Pulsadores y Leds del PORTA en el EASYPIC

En la figura 30 podemos apreciar, en la parte izquierda,
que cuando no se presiona el pulsador el LED
permanece apagado. En la parte derecha cuando se
presiona el pulsador, se enciende el LED conectado en
RA0 y permanecerá en ese estado mientras el pulsador
esté presionado.

Figura 30. Usando el EASYPIC v7 para probar el código

Durante el desarrollo del curso el EASYPIC v7 y sus
recursos serán presentados con detalle ya que es la
principal herramienta para probar la efecƟvidad de los
programas. El EASYPIC es una herramienta basada en
hardware y nos permite trabajar directamente con el
microcontrolador de nuestro interés.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
24

7.3 Simulador del MPLAB X IDE

El simulador de MPLAB X es un simulador de eventos
discretos para disposiƟvos tales como:

 Las familias de microcontroladores PIC
 Las familias de Controladores de señales digitales

dsPIC

El simulador, integrado en el MPLAB X IDE, es una
herramienta diseñada para modelar la operación de los
microcontroladores de Microchip como soporte en el
proceso de depuración (debugging) del soŌware
elaborado para estos disposiƟvos. Una vez editado el
programa basta con presionar la tecla indicada en la
figura 31 para comenzar la simulación del programa.

Figura 31. Iniciar simulación con el simulador de MPLAB X

En la figura 32 es mostrada la pantalla que aparece
cuando se inicia la simulación. En la parte inferior se
puede apreciar que se han incluido los pines de entrada
y salida correspondientes al ejemplo #1. RA4 aparece
eƟquetada como entrada digital (Din) y RA0 como
salida digital (Dout). En dicha figura RA4=0 y por lo
tanto el LED (RA0) permanece en 0.

Figura 32. Ejemplo con el simulador de MPLAB X IDE

En la figura 33 el valor de RA4 fue cambiado a 1. En la
línea 39 como PB1 es igual a 1 se ejecutará la
instrucción de la línea 41 poniendo a 1 RA0 (pin donde
está conectado el LED).

Figura 33. Ejemplo con el simulador de MPLAB X IDE

Durante el desarrollo del curso, las herramientas
presentadas serán uƟlizadas para probar la efecƟvidad
de los programas. Los recursos que nos ofrecen serán
más evidentes en la medida que los problemas a
resolver sean más complejos.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
25

Ejemplo #2: AcƟvación motor DC, v1

ConƟnuaremos nuestro camino desarrollando el
ejemplo #2 el cual, al igual que el ejemplo #1, servirá
para introducir nuevos elementos de hardware y
soŌware que vendrán a fortalecer nuestra caja de
herramientas necesarias para el diseño e
implementación de un sistema embebido.

1. Descripción del proyecto

Se requiere el desarrollo de un sistema, basado en un
microcontrolador, que permita la energización de un
motor DC pequeño cuando dos pulsadores sean
presionados simultáneamente. Un LED deberá ser
encendido cuando el motor esté energizado. El reloj del
sistema debe ser implementado con el oscilador
interno del microcontrolador. Si uno o ambos
pulsadores no son presionados, el motor y el LED deben
ser desenergizados.

2. Diagrama de bloques del proyecto

La figura 34 muestra el diagrama de bloques del
proyecto y podemos apreciar la presencia de un nuevo
componente, un motor.

Figura 34. Diagrama de bloques del proyecto

3. Diagrama de circuito del proyecto

La figura 35 muestra el diagrama de circuito para el
ejemplo #2. La mayoría de los componentes que
conforman el circuito fueron presentados en
Descripción del Hardware del ejemplo #1. Dos nuevos
componentes, el transistor BJT y el MOTOR DC, forman
parte del sistema.

Figura 35. Diagrama del circuito del proyecto

4. Descripción del Hardware

El pulsador, el resistor y el diodo LED fueron
presentados en el ejemplo #1. En el proyecto actual
aparecen dos nuevos elementos un motor DC y un
transistor BJT. A conƟnuación, será presentada una
descripción breve del transistor BJT y el motor DC.

 Transistor BJT
Un transistor de unión bipolar (BJT, por sus siglas en
inglés) es un componente electrónico fundamental que
puede amplificar una corriente o actuar como un
switch. Está hecho de un material semiconductor y
Ɵene tres terminales: base, colector y emisor.
Aplicando una corriente pequeña en la base podemos
controlar una corriente mayor que circula entre el
colector y el emisor. Existen dos Ɵpos principales, NPN
y PNP, y aunque difieren en su construcción ambos
trabajan de igual forma. Los transistores BJT son
ampliamente uƟlizados en diferentes disposiƟvos
electrónicos tales como amplificadores, switches, y en
circuitos integrados complejos. La figura 36 muestra los
símbolos de los transistores NPN y PNP.

Figura 36. Símbolos de los transistores BJT.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
26

En los sistemas embebidos el transistor es uƟlizado,
principalmente, como switch. La idea básica es la
siguiente:

Switch Abierto: El transistor debe estar en su región de
corte, en la cual no circula corriente entre colector y
emisor actuando como un switch abierto. Esto se logra
aplicando un voltaje igual a cero en su base.

Switch cerrado: El transistor debe estar en su región de
saturación permiƟendo que la corriente máxima circule
entre colector y emisor actuando como un switch
cerrado. Esto se logra aplicando suficiente voltaje en su
base.

En esencia, una pequeña corriente en la base controla
una corriente mayor entre colector y emisor, haciendo
que el transistor se comporte como un switch
controlado por corriente.

Para implementaciones prácƟcas, necesitaremos
componentes adicionales tal como resistores para
controlar la corriente de base apropiadamente.

En la figura 37 se muestra un circuito en el cual el
transistor actúa como un switch abierto.

 Cuando el switch está en la posición 2, en la base

del transistor se aplican 0V y el transistor actúa
como un switch abierto.

Figura 37. Transistor como switch abierto.

En la figura 38 se muestra un circuito en el cual el
transistor actúa como un switch cerrado.

Figura 38. Transistor como switch cerrado.

 Cuando el switch está en la posición 1, se aplican 5V
en el extremo izquierdo del resistor lo cual provoca
que circule una corriente en la base del transistor
cuyo valor puede ajustarse, mediante el resistor en
la base, de forma que el transistor entre en su
región de saturación actuando como un switch
cerrado.

 Motor DC
Un motor DC es una máquina que uƟliza corriente
eléctrica directa (DC) para rotar. Funciona usando
magneƟsmo: la electricidad crea campos magnéƟcos, y
dichos campos mueven partes del motor para hacerlo
rotar. Los motores DC son comunes en muchos
disposiƟvos, desde herramientas de potencia a
abanicos de computadoras.
En una implementación prácƟca se requerirá de un
manejador (driver) para el funcionamiento adecuado
del motor. El manejador funciona como un traductor
entre el controlador y el motor DC.

Si el controlador es implementado usando un
microcontrolador la corriente que este puede
suministrar no es suficiente para suplir la requerida por
el motor. El manejador actúa como un amplificador
tomando la señal pequeña del microcontrolador y
convirƟéndola en una señal alta corriente para manejar
el motor. En breve, un manejador para un motor DC es
esencial para controlar un motor DC efecƟva y
seguramente cuando uƟlizamos microcontroladores.

En la figura 35 podemos ver que la acƟvación del motor
es controlada desde el pin RB4. Si el pin RB4 es puesto
a cero, el transistor actúa como un switch abierto y el
motor no es acƟvado. Si el pin RB4 es puesto a 1 (5V) el
transistor actuará como un switch cerrado permiƟendo
la circulación de corriente y por ende la acƟvación del
motor.

5. Lenguaje Descripción del Programa (PDL)

El siguiente algoritmo se recoge el requerimiento de
que ambos pulsadores deben ser presionados
simultáneamente, mostrado en letras rojas, para que el
motor sea energizado.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
27

START
 Configurar RA4 y RA5 como entradas
 Configurar RA0 y RB4 como salidas
 Inicializar PORTA y PORTB en cero
 Configurar oscilador interno a 4MHz
 DO FOREVER
 IF PB1 and PB2 son presionados THEN
 Encender LED
 Energizar MOTOR
 ELSE
 Apagar LED
 Desenergizar MOTOR
 ENDIF
 ENDDO
END

6. Programa del proyecto

La primera parte del programa muestra….

En la segunda parte del programa …..

La tercera parte del programa

En la codificación del algoritmo podemos uƟlizar el
operador lógico AND (&&) el cual es un operador
binario dado que opera sobre dos elementos de datos.
El operador && combina dos expresiones lógicas- es
decir, dos expresiones que Ɵenen un valor verdadero o
falso (1 o 0).

En el ejemplo #2 podemos escribir el siguiente
enunciado:

if((PB1==1) && (PB2==1))
{
 código;
}

La expresión es verdadera si ambas expresiones son
verdaderas (PB1 está presionado y PB2 está
presionado1) lo cual llevará a la ejecución del código
entre las llaves del if. Si una o ambas expresiones son
falsas, el resultado de la operación es falsa. No se
ejecutará el código entre las llaves del if.

Otro operador lógico es el OR (||) y será presentado en
el ejemplo #3.

En la figura 39 se muestra el programa para controlar la
acƟvación del motor DC. Las palabras de configuración
CONFIG1 y CONFIG2 se manƟenen igual que en el
ejemplo #1. Entre la línea 23 y 28 se han definido una

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
28

serie de constantes simbólicas con el objeƟvo de hacer
más legible el código.

Las asignaciones entre las líneas 32 y 37 se inicializan
los puertos involucrados en la solución y en la línea 38
se configura el oscilador interno a 4MHz.
En la línea 40 uƟlizamos el while(1) para generar un lazo
lo cual permiƟrá la ejecución del código entre las llaves
del while de manera infinita.

En la línea 42 se uƟliza el operador lógico AND (&&)
para determinar si ambos pulsadores son presionados
simultáneamente. Si el resultado es verdadero, el
motor será energizado y el LED encendido. En caso
contrario se ejecutará el código en el cuerpo del else lo
que hará que el motor sea desenergizado y el LED
apagado.

Figura 39. Programa acƟvación de motor DC

7. EfecƟvidad del programa

UƟlizaremos PROTEUS para verificar la efecƟvidad del
código elaborado. La figura 40 muestra el esquema del
circuito.

Figura 40. Esquema del circuito ejemplo #2

En las figuras 41 y 42 se muestra el resultado cuando
solamente uno de los pulsadores está presionado. En
ambos casos la expresión no es verdadera y por lo tanto
no se ejecuta el código en el cuerpo del if, se ejecuta el
del else.

Figura 41. Solamente PB1 es presionado

Figura 42. Solamente PB2 es presionado

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
29

En la figura 43, ambos pulsadores son presionados y se
puede apreciar como el pin RB4 está rojo indicando que
hay 5V. El LED está encendido y el motor girando lo cual
puede ser visto en el video.

Figura 43. Ambos pulsadores están presionados

Se ponen a disposición del estudiante el esquema del
circuito para su simulación en PROTUES y el video de la
simulación para ver los pasos seguidos en la
verificación.

 El esquema para el ejemplo #2 encuentra en

UNIDADII – PROTEUS – ESQUEMAS – UII_EJ_2.
 El video para el ejemplo #1 se encuentra en

UNIDADII – PROTEUS – VIDEOS – UII_EJ_2

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
30

Ejemplo #3: AcƟvación motor DC v2

1. Descripción del proyecto
Se requiere el desarrollo de un sistema, basado en un
microcontrolador, que permita la energización de un
motor DC pequeño al presionar uno, o los dos, de dos
pulsadores. Un LED deberá ser encendido cuando el
motor esté energizado. El reloj del sistema debe ser
implementado con el oscilador interno del
microcontrolador.

El diagrama de bloques y el diagrama de circuito del
proyecto son similares al del ejemplo #2. Dado que no
hay componentes nuevos en el sistema, para aclarar
dudas respecto a los componentes ver la descripción
del hardware del ejemplo #2.

5. Lenguaje Descripción del Programa (PDL)
El algoritmo permanece igual excepto la primera línea
después del DO FOREVER:

START
 Configurar RA4 y RA5 como entradas
 Configurar RA0 y RB4 como salidas
 Inicializar PORTA y PORTB en cero
 Configurar oscilador interno a 4MHz
 DO FOREVER
 IF PB1 or PB2 son presionados THEN
 TURN ON LED
 TURN ON MOTOR
 ELSE
 TURN OFF LED
 TURN OFF MOTOR
 ENDIF
 ENDDO
END

6. Programa del proyecto
Para implementar el código requerido en el compilador
XC8 podemos uƟlizar el operador lógico OR (||) el cual
cubre la situación cuando necesitamos chequear si una
de dos o más condiciones es verdadera. Si uno o ambos
operando del operador es verdadero, el resultado es
verdadero. El resultado es falso cuando ambas
expresiones son falsas.

Para el ejemplo #3, la línea 42 del programa Ɵene la
siguiente forma:

if ((PB1==1) || (PB2==1))

El código en la línea 42 le indica al compilador que si
PB1, o PB2, es presionado el motor y el LED deben ser
energizados. Si los dos pulsadores son presionados
simultáneamente el motor y el LED también serán
energizados.

7. EfecƟvidad del programa
UƟlizaremos PROTEUS para verificar la efecƟvidad del
código elaborado. La figura 44 muestra el esquema del
circuito.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
31

Figura 44. Esquema del circuito ejemplo #2

En las figuras 45 y 46 se muestra el resultado cuando
solamente uno de los pulsadores está presionado. En
ambos casos la expresión es verdadera y por lo tanto
será ejecutado el código en el cuerpo del if.

Figura 45. Solamente PB1 es presionado

Figura 46. Solamente PB2 es presionado

En la figura 47, ambos pulsadores son presionados y se
puede apreciar como el pin RB4 está rojo indicando que
hay 5V. El LED está encendido y el motor girando lo cual
puede ser visto en el video.

Figura 47. Ambos pulsadores están presionados

Se ponen a disposición del estudiante el esquema del
circuito para su simulación en PROTUES y el video de la
simulación para ver los pasos seguidos en la
verificación.

 El esquema para el ejemplo #2 encuentra en

UNIDADII – PROTEUS – ESQUEMAS – UII_EJ_3.

 El video para el ejemplo #1 se encuentra en

UNIDADII – PROTEUS – VIDEOS – UII_EJ_3

Resumen en este punto del camino

Se desarrollaron tres ejemplos relacionados con el
manejo de los puertos del microcontrolador
PIC16F1709. Los ejemplos han permiƟdo presentar
algunos recursos tanto de hardware como de soŌware.

En hardware fueron introducidos el resistor, el
pulsador, el diodo LED, el transistor BJT y el motor DC.

En soŌware se presentaron varios operadores básicos
tales como el operador de asignación(=), el operador
relacional “igual a”(==), los operadores lógicos AND
(&&) y OR (||). También fueron introducidos elementos
para la toma de decisiones como el if-else y para la
implementación de lazos como el while.
Un formato de la estructura de un programa para un
PIC fue presentado.

La efecƟvidad de los programas se uƟlizaron el
simulador de PROTEUS y el EASYPIC v7.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
32

Ejemplo #4: Banda Transportadora

1. Descripción del proyecto
Se ha solicitado un sistema basado en un
microcontrolador para controlar una banda
transportadora, movida por un motor DC, usada para
mover cajas entre dos puntos de la planta de
producción. El funcionamiento deseado es el siguiente:

 Al presionar un pulsador (START) la banda debe ser

acƟvada, MOTOR energizado.

 El MOTOR deberá ser desenergizado cuando un

segundo pulsador (STOP) sea presionado o cuando
el número de cajas alcance el valor indicado. Para la
detección de las cajas deberá uƟlizarse un SENSOR
capaciƟvo.

 Si el MOTOR se deƟene debido a que se ha

alcanzado el número de cajas, se deberá acƟvar un
LED.

 Si el MOTOR se deƟene debido a que se presionó el

STOP deberá mantenerse el conteo y el proceso
deberá conƟnuar cuando se presione nuevamente
START.

 Para realizar un nuevo proceso deberá presionarse

START.

2. Diagrama de bloques del proyecto
La figura 48 muestra el diagrama de bloques del
proyecto. El sensor es un nuevo elemento de hardware.

Figura 48. Diagrama de bloques banda trasportadora

3. Diagrama de circuito del proyecto
En la figura 49 muestra un sensor capaciƟvo en
configuración PNP. El sensor es alimentado con 24VDC
y, para poder uƟlizarlo con el microcontrolador es
necesario converƟr los 24VDC a su salida a 5V para
saƟsfacer las caracterísƟcas de entrada de este.

Figura 49. Diagrama de bloques banda trasportadora

PROTEUS no cuenta con un modelo para este Ɵpo de
sensor y para verificar la efecƟvidad del programa
uƟlizaremos, para simular el sistema, la configuración
mostrada en la parte izquierda inferior del circuito de la
figura 50.

Figura 50. Diagrama de bloques banda trasportadora

4. Descripción del hardware
El único elemento nuevo en el ejemplo #4 es el sensor
capaciƟvo. A conƟnuación, una descripción breve del
sensor.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
33

 Sensor CapaciƟvo
Un sensor capaciƟvo es un disposiƟvo electrónico que
puede detectar sólidos o líquidos sin contacto İsico.
Para detectar los objeƟvos, los sensores capaciƟvos
emiten un campo eléctrico desde uno de los extremos
del disposiƟvo. Cualquier objeƟvo que pueda
distorsionar el campo eléctrico puede ser detectado
por un sensor capaciƟvo.

Figura 49. Conexiones Sensor capaciƟvo

En la figura 51, se uƟliza la salida normalmente abierta.
Cuando la botella es detectada por el sensor en el cable
negro tendremos 24VDC y para poder uƟlizar el sensor
con el microcontrolador dicho voltaje debe ser
reducido a 5VDC.

Figura 51. Conexiones Sensor capaciƟvo

Durante el desarrollo del ejemplo, en la clase, se
presentarán más detalles sobre los sensores
capaciƟvos.

5. Lenguaje Descripción del Programa (PDL)
En el ejemplo #4 es necesario llevar el conteo de las
cajas movidas por la banda transportadora y debemos,
como se muestra en el PDL, declarar e inicializar una
variable para tal fin.
El PDL indica que el estado del pulsador START debe ser
indagado repeƟdamente y de eso se encarga el DO-
FOREVER. Si START es presionado se acƟva el MOTOR y
se apaga el LED. Si START no es presionado, el motor
debe permanecer desenergizado y el LED apagado.
Una vez presionado START y encendido el MOTOR, el
sistema entra a un lazo condicional, establecido por el
REPEAT – UNTIL, en el cual se interroga el estado del
SENSOR de forma repeƟda. Si el sensor es presionado

la variable conteo es incrementada en 1. El sistema
saldrá del lazo cuando sea presionado STOP o sea
alcanzado el número de cajas establecido. Si la salida es
debido a que se alcanzó el número de cajas deseado el
LED deberá ser encendido y la variable conteo puesta a
cero.
Si el sistema sale del lazo porque STOP fue presionado,
el programa se ejecuta nuevamente a parƟr del DO
FOREVER interrogando el estado de START el cual debe
ser presionado para reanudar el proceso.

START
 Definir variable conteo e inicializarla en cero
 Configurar RA4, RA5 y RC7 como entradas
 Configurar RA0 y RB4 como salidas
 Inicializar PORTA, PORTB y PORC en cero
 Configurar oscilador interno a 4MHz
 DO FOREVER
 IF START es presionado THEN
 Energizar MOTOR
 Apagar LED
 REPEAT
 IF SENSOR es acƟvado THEN
 Incrementar variable conteo
 ENDIF
 UNTIL STOP presionado o Conteo igual a X
 IF conteo alcanzó valor deseado
 Encender LED
 Conteo igual a cero
 ENDIF
 ELSE
 Desenergizar MOTOR
 Apagar LED
 ENDIF
 ENDDO
END

6. Programa del Proyecto
La solución del ejemplo #4 requiere la uƟlización de una
variable.

Variables en C
Una variable no es más que el nombre de una localidad
de memoria que uƟlizamos para almacenar datos. En C
el valor almacenado en la variable puede ser cambiada
durante la ejecución del programa.

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
34

Cada variable en C Ɵene lo siguiente:

1. Un Ɵpo específico, el cual determina el tamaño y

estructura de la memoria de la variable.
2. El rango de valores que pueden ser almacenados en

la memoria y
3. El conjunto de operaciones que pueden ser

aplicadas a la variable.

El nombre de una variable puede estar compuesto de
letras, dígitos, y el carácter guion bajo. Debe comenzar
con una letra o con un dígito.

En dependencia de su alcance existen diferentes Ɵpos
de variables y serán presentadas en el momento que
sea requerido. Algunos Ɵpos de variables son los
siguientes:

 Variables globales
 Variables locales
 Variables estáƟcas
 Variables externas
 Variables voláƟles

Las variables deben ser declaradas antes de ser
declaradas e inicializadas antes de ser uƟlizadas. La
declaración le indica al compilador que existe una
variable con el nombre y Ɵpos especificados de forma
que este pueda conƟnuar con su trabajo de
compilación sin necesidad de más detalles acerca de la
variable.

Declaración de una variable:

Tipo_de_dato nombre_variable;

Inicialización de una variable:

nombre_variable=valor;

Se pueden combinar ambas cosas y presentar la
variable de la siguiente manera:

uint8_t nombre_variable = 0;

En el ejemplo #4 declararemos e inicializaremos una
variable que llamaremos “conteo” en la cual
almacenaremos el valor del número de cajas movidas
por la banda transportadora.

uint8_t conteo=0;

Lo anterior indica al compilador que existe una variable
entera de 8-bit (máximo valor es 255) llamada “conteo”.

En la primera parte del programa las palabras de
configuración, el archivo de cabecera xc.h y las
constantes simbólicas definidas con el objeƟvo de
hacer más legible el código.

En la segunda parte podemos apreciar la definición de
la variable conteo y la inicialización de los puertos
uƟlizados en la solución. Igual que en los otros
ejemplos se uƟliza el oscilador interno del
microcontrolador configurado a 4MHz (línea 34).

**
The tragedy in life doesnÕt lie in not reaching your goal. The tragedy lies in having no goals to reach.

Benjamin Mays
35

Para implementar el DO FOREVER uƟlizamos el loop tal
como se indica en el código. El enunciado for(;;) en la
línea 36 indica que es un lazo infinito.

El REPEAT UNTIL fue implementado uƟlizando el do-
while loop. Las instrucciones en el cuerpo del lazo son
ejecutadas primero antes de chequear la condición. Si
la condición es falsa, el do-while es ejecutado una vez.

do
{
 statements;
}while(condición);

En la línea 44 el estado del SENSOR es chequeado y
mientras no haya una caja presente la variable conteo
no será incrementada. El lazo será ejecutado mientras
la variable conteo no alcance el valor indicado, 5 en el
ejemplo, o STOP no sea presionado.

En la línea 51, si el valor de conteo establecido es
alcanzado el LED es encendido y la variable conteo es
puesta a cero.

7. EfecƟvidad del Programa
La efecƟvidad del programa será verificada en primer
lugar uƟlizando el simulador PROTEUS. Luego será
uƟlizado el EASYPIC v7. La figura 52 muestra el
esquema del circuito del ejemplo #5.

Figura 52. Esquema PROTEUS, banda transportadora

Para observar el incremento de la variable conteo
podemos agregar el código requerido, después de
conteo++ en la línea 47, para ver el valor en los pines
<RC3:RC4> del PORTC.

PORTC=(0xFF) & (conteo);

El programa completo se encuentra al final del tema
Entradas y Salidas digitales.

 El esquema para el ejemplo #4 encuentra en

UNIDADII – PROTEUS – ESQUEMAS – UII_EJ_4.

 El video para el ejemplo #4 se encuentra en

UNIDADII – PROTEUS – VIDEOS – UII_EJ_4

Con el ejemplo #4 damos por finalizado el tema de la
unidad II “Entradas y Salidas Digitales.” En el próximo
tema será considerada la temporización y su
importancia en los sistemas embebidos.

