Embedded Systems
Development

INTRODUCCION

Un microcontrolador es el cerebro de un sistema
embebido, obtiene datos desde el entorno, los procesa
y genera sefales para actuar sobre este. La interaccion
del microcontrolador y el medioambiente se realiza
mediante pines, agrupados en los denominados
puertos (PORTX), los cuales pueden ser configurados
para funcionar como entradas o salidas.

Entre los microcontroladores PIC que seran utilizados
en el curso sobre sistemas embebidos se encuentra el
PIC16F1709, figura 1, el cual cuenta con 20 pines de los
cuales 17 pueden ser configurados como entradas o
salidas. Uno de los pines (RA3) es solamente entrada.

60LT4912Id

>
O
[
(=2}
M
[
~J
o
o

Figura 1. Pines en el PIC16F1709

La mayoria de los pines son agrupados en bloques
denominados puertos (PORT en inglés) y para el
microcontrolador bajo consideracién tenemos:
PORTA: seis pines <RA5:RA0>

PORTB: cuatro pines <RB4:RB7>

PORTC: 8 pines <RC7:RCO>

Entradas y Salidas Digitales

i
(=8
1

1

3
M
[i=l

B PORTBbits.RB7

SISTEMAS EMBEBIDOS
Curso Basico [

wvold main{vold)

TRISAbits.TR
PORTAbits.
ENSELAbits.RITSA0=0;

En el diagrama de bloques del microcontrolador
PIC16F1709, ver figura 2, podemos observar la
presencia de los puertos mencionados, asi como de
varios periféricos tales como un convertidor analégico
digital (ADC, por sus siglas en ingles), temporizadores
como el TMR1, generador de sefales de ancho de pulso
modulado (PWM) entre otros.

Program
Flash Memory
RAM |[€=g=P| PORTA
£
\ 4
PORTB"
CLKOUT Timing
Generaton
-
HFINTOSC
N) . -
C%L, LFINTOSC Unidad Central de Procesamiento PORTC
Oscillator cPU <
WR -
2c0
le ml P Timer0 Timer1 l Timer2 | MSSP lConWa:a-.] -
coG

1t t t ¢t 1
cner [105 [# PR

Figura 2. Diagrama de bloques PIC16F1709

Registros de Funciones Especiales (SFRs)

Los microcontroladores PIC presentan unos registros
con funciones especiales (SFR, por sus siglas en inglés)
para configurar el comportamiento de sus periféricos.

Un registro, en general, es una ubicacion de memoria
pequeia y de alta velocidad en la arquitectura interna
del microcontrolador.

Los registros de funciones especiales son ubicaciones
de memoria utilizados para:

e Controlar y manejar la operacion de varios modulos
periféricos del microcontrolador.

AXAXAXXAXAAAXAAAXAAAAAXAAXXAXAXAXAXXAXXAXAXAXXXAARAXAAAXAAAAA AR X AAARAAAA AT AAAX TR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to
reach. Benjamin Mays

1

e Observar el estado y leer datos desde estos
periféricos.

Algunas caracteristicas de los registros especiales
(SFRs):

» Proposito especifico: Cada registro es disefiado
para controlar un periférico o funcion particular.

» Mapeados en memoria: Los SFRs estan ubicados en
una region especifica del espacio de memoria del
microcontrolador, lo cual permite que el programa
pueda acceder a ellos y modificarlos.

» Control a nivel de bit: Muchos SFRs estan
conformados de bits individuales, cada uno
controlando un aspecto especifico de la operacion
del periférico.

En esencia, los registros especiales proveen la interfaz
entre el ndcleo del microcontrolador y su mundo
externo o periféricos internos, habilitando al
programador para personalizar y controlar el
comportamiento del dispositivo. Lo anterior se logra
escribiendo un 1 o un 0 en la posicion de un bit
determinado.

La figura 3 muestra un listado parcial de los Registros
de Funciones Especiales del microcontrolador PIC16F
1709. En la parte izquierda podemos identificar la
direccion de memoria donde estdn ubicados, por
ejemplo, el registro PORTA se encuentra en la direccidon
00Ch, PORTB en 00Dh y PORTC en 00Eh.

PUERTOS: REGISTROS

En la figura 1 es presentada la asignacién de pines del
PIC16F1709, PORTA en verde, PORTB en amarillo y
PORTC en azul. Para configurar el comportamiento de
los pines de los puertos, el microcontrolador cuenta
con 8 registros de 8-bits cada uno y sus nombres son
listados en la tabla 1.

En el PIC16F1709, la x puede ser A, B o C. Por el
momento consideraremos los registros TRISx, PORTx y
ANSELx.

TABLE 3-4: PIC16(L)F1709 MEMORY MAP (BANK
BANK 0 BANK 1 BANK 2
000h 080h 100h
Core Registers Core Registers Core Registers
(Table 3-2) (Table 3-2) (Table 3-2)
00Bh 08Bh 10Bh
00Ch PORTA 0&Ch TRISA 10Ch LATA
00Dh PORTB 08Dh TRISB 10Dh LATB
00Eh PORTC D8Eh TRISC 10Eh LATC
00Fh — 08Fh — 10Fh —
010h — 090h — 110h —
011h PIR1 091h PIE1 111h CM1CONO
012h PIR2 092h PIE2 112h CM1CON1
013h PIR3 093h PIE3 113h CM2CONOD
014h — 094h — 114h CM2CONT
015h TMRO 095h [OPTION_REG | 115h CMOUT
016h TMRIL 096h PCON 116h BORCON
017h TMR1H 097h WDTCON 17h FVRCON
018h T1CON 098h OSCTUNE 118h| DACICOND
019h T1GCON 099h OSCCON 119h| DAC1CON1
01Ah TMR2 09Ah OSCSTAT 11Ah —
01Bh PR2 09Bh ADRESL 11Bh —
01Ch T2CON 09Ch ADRESH 11Ch ZCD1CON
01Dh — 09Dh ADCOND 11Dh —
01Eh — 0SEh ADCON1 11Eh —
01Fh — 09Fh ADCON2 11Fh —
020h 0ADh 120h
General General General
Purpose Purpose Purpose
Register Register Register
80 Bytes 80 Bytes 80 Bytes
06Fh OEFh 16Fh
070h OFOh 170h
Common RAM Accesses Accesses
T0h—TFh T0h—7Fh 70h — TFh
07Fh OFFh 17Fh

Figura 3. Registros de Funciones Especiales en el PIC16F1709
(Listado parcial)

Tabla 1: Registros Puertos Entrada/Salida

TRISX ODCONx

PORTx SLRCONXx

LATx ANSELXx

INLVLX WPUx
Registros TRISx

En el PIC16F1709 los bits de los registros TRISA, TRISB
y TRISC son utilizados para configurar si un pin de los
puertos correspondientes funcionara como entrada o
salida.

En la figura 4 se muestran los registros TRISX
correspondientes a los tres puertos del PIC16F1709.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

2

TRISA: PORTA TRI-STATE REGISTER
R/W-1/1 R/W-1/1 R/W-1/1
TRISAS TRISA4 TRISA2

U-1 R/W-1/1

TRISA1

R/W-1/1
TRISAO
bit0

TRISB: PORTB TRI-STATE REGISTER
R/W-1/1 R/W-1/1
TRISBS TRISB4

u-0 u-0 u-0 uU-0

R/W-1/1
TRISB7
bit 7

TRISC: PORTC TRI-STATE REGISTER

R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
TRISC7® TRISC6® TRISC5 TRISCA TRISC3 TRISC2 TRISC1 TRISCO
bit 7 bit0

R/W-1/1
TRISB6

Figura 4. Bits de los registros TRISA, TRISB y TRISC

e Siaun bit del registro TRISx se le asigna el valor ‘1’
dicho pin serd una entrada.

e Siaun bit del registro TRISx se le asigna el valor ‘0’
dicho pin serd una salida.

En los registros el bit menos significativo esta ubicado
en el extremo derecho (bit0) y el mas significativo en el
extremo izquierdo (bit7), ver figura 4.

Si para el funcionamiento deseado del sistema que
estamos desarrollando se requiere que los pines
<RC3:RCO> sean entradas y los pines <RC7:RC4> sean
salidas, debemos asignarles los valores adecuados a los
bits del registro TRISC. Para hacerlo es necesario utilizar
el operador adecuado del lenguaje C.

Operadores en C

Un operador es un simbolo que le indica al compilador
gue debe realizar una determinada operacién légica o
matematica. En un programa, los operadores son
utilizados para manipular datos o variables.

El lenguaje C soporta un conjunto de operadores los
cuales son clasificados, generalmente, como se
muestra en el siguiente listado.

e Operadores aritméticos
e Operadores relacionales
e Operadores logicos

e Operadores bitwise

e Operadores de asignacion

e Operadores condicionales

Los operadores son componentes esenciales en
cualquier lenguaje de programacién y estos, al igual
que otros componentes, seran presentados en el
momento que su uso sea requerido para lograr la
funcionalidad de un sistema dado.

Operadores de asignacion

Tal como lo sugiere su nombre, la principal
responsabilidad de los operadores de asignacién en el
lenguaje C es asignar valores a variables. La asignacion
se realiza ejecutando operaciones con operadores
aritméticos, o con operadores bitwise, y asignandole el
resultado a las variables.

e Losoperadores aritméticos son usados para realizar
calculos matematicos con tipos de datos numéricos
en C.

e Los operadores bitwise en C se refiere a aquellos
operadores que nos permiten manipular
individualmente los bits de un nimero binario.

Uno de los operadores en la categoria de asignacion es
representado con el simbolo =y es llamado operador
de asignacion ya que toma el valor a su derecha y lo
almacena en la variable a la izquierda.

Por ejemplo, para asignar el valor 0 o 1 a los bits del
registro TRISC podemos utilizar el operador de
asignacion tal como se muestra a continuacion:

TRISC = 0b00001111; (TRISC=0xOF en hexadecimal)

El valor en binario, 00001111, es almacenado en el
registro TRISC. A los bits <RC7:RC4> se les asignd el
valor O (salidas) y a los bits <RC3:RCO> se les asigno el
valor 1 (entradas).

Los valores asignados a cada bit del registro TRISC son
mostrados en la figura 5.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

3

TRISC: PORTC TRI-STATE REGISTER

R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

TRISC7) TRISC6™) TRISCS TRISC4 TRISC3 TRISC2 TRISC1 TRISCO

bit 7 bit0
o [o | o | o | 1 [1 | 1 [1

Figura 5. Configuracién del registro TRISC

El diagrama de circuito de un semadforo basico,
utilizando un PIC17F1709, es mostrado en la figura 6.

Los pines RAO, RA1 y RA2 del microcontrolador deben
ser configurados como salidas y el pin RA3 como
entrada.

SEMAFORO

+HV

R1

60LT49TIId

Embedded Saystems
Devidogment

Figura 6. Diagrama de circuito de un semaforo

El valor de los bits puede ser seteado con las siguientes
asignaciones:

TRISAbits.TRISA0=0;
TRISAbits.TRISA1=0;
TRISAbits.TRISA2=0;
TRISAbits.TRISA3=1;

En las asignaciones anteriores cada bit es puestoa 0, o
a 1, de forma individual.

El registro TRISA del PIC16F1709 indica la existencia de
6 pines de los cuales RA3 es solamente entrada
(TRISAbits.TRISA3=1). Si consideramos que los pines

RA4 y RA5 seran salidas, debemos asignar al TRISA el
valor 00001000. Es decir:

TRISA=0b00001000; (en binario)
TRISA=0x08; (en hexadecimal)

Dado que no conocemos el principio de
funcionamiento de los diferentes componentes del
circuito, por el momento aceptaremos que:

e Si PB (pulsador) no es presionado en el pin RA3 se
aplican OV (0 légico).

e Si PB es presionado en el pin RA3 se aplican 5V (1
légico).

En dependencia del nivel de voltaje en el pin RA3
(entrada) y del programa almacenado en la memoria
del microcontrolador, este generara los voltajes, y los
tiempos, en los pines RAO, RA1 y RA2 (salidas)
requeridos para el funcionamiento apropiado del
semaforo.

Registros ANSELx

Los registros ANSELA, ANSELB y ANSELC son utilizados
para definir si un pin serd una entrada digital o una
entrada analdgica. El funcionamiento es el descrito a
continuacién:

e Siaun bit del registro ANSELXx se le asigna el valor
‘1’ el microcontrolador lo considerara como una
entrada analdgica.

e Siaun bit del registro ANSELXx se le asigna el valor
‘0’, el microcontrolador la considerard como una
entrada digital.

De los 18 pines de entrada/salida del microcontrolador
PIC16F1709, 12 pueden ser configurados como
entradas analdgicas. En la hoja de datos (datasheet)
encontraremos la informacién correspondiente.

En lafigura 7, en el registro ANSELC a los bits <RC7:RC4>
se les asigno el valor 1y a los pines <RC3:RCO> el valor

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

4

0. Lo anterior significa que los pines de <RC7:RC4>
seran entradas analdgicas y los pines de <RC3:RCO>
seran entradas o salidas digitales.

ANSELC: PORTC ANALOG SELECT REGISTER

R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

ANSC7® ANSC6(? ANSC5(3 ANSC4() ANSC3 ANSC2 ANSC1 ANSCO

bit7 bit0
1 | 1 | 1 [1] o | o | o | o

Figura 7. Configuracion del registro ANSELC

Para lograr el comportamiento realizamos la asignacion
mostrada a continuacién:

ANSELC=0b11110000; (ANSELC=0xF0, hexadecimal)
En la figura 7 podemos apreciar que todos los pines del

PORTC pueden ser configurados como entradas
analdgicas.

En la figura 8 observamos que en el PORTA solamente
cuatro pines pueden ser configurados como entradas
analdgicas (ANSAO, ANSA1, ANSA2 y ANSA4)

ANSELA: PORTA ANALOG SELECT REGISTER
R/W-1/1 u-0 R/W-1/1
ANSA4 ANSA2

u-0 u-0 u-0 R/W-1/1

ANSA1

R/W-1/1
ANSAQ
bit0

Figura 8. Registro ANSELA

Registros PORTx

La interaccion del microcontrolador y el
medioambiente se realiza mediante pines, agrupados
en los denominados puertos (PORTX), los cuales
pueden ser configurados para funcionar como pines de
entrada o pines de salida.

Los valores de los pines de un puerto pueden ser leidos
o escritos. Conociendo el estado (1 o 0) de un pin dado
nos permite tomar decisiones para incidir sobre el
entorno. Los estados de los pines de salida pueden ser
cambiados para lograr el comportamiento deseado del
medio ambiente. Un ejemplo podria ser que cuando en
un pin dado se apliquen 5V (1 légico) provoque que un
motor comience a girar. Lo ultimo se lograria
conectando el pin de salida del microcontrolador al

manejador (driver) adecuado del motor tal como se
muestra en la figura 9.

+5V

—_—

(e}
START STOP
? (e}

10K

10K

604T49T2Id

GND =

TRANSISTOR
BJT

S ESD

Embedded Systems
fevelopment

Figura 9. Motor DC conectado al pin RB4 (salida)

En el ejemplo #1 sera presentada la herramienta basica
para la toma de decisiones en el lenguaje C.

En este punto del camino tenemos los elementos
suficientes para entender el manejo basico de las
entradas y salidas digitales.

Procederemos al desarrollo del ejemplo #1 el cual,
aunque es bastante simple, serd de mucha utilidad para
lograr lo siguiente:

e Presentar los pasos que pueden seguirse para
desarrollar un sistema embebido basado en un
microcontrolador

e Presentar varios elementos basicos utilizados para
garantizar la funcionalidad de un sistema. Seran
presentados nuevos operadores, el enunciado
basico para la toma de decisiones en C y algunas
formas de implementar un lazo (loop) infinito.

PASOS PARA EL DESARROLLO DE UN SE

Los pasos, y el orden de aplicacion, para desarrollar un
sistema embebido podrian ser los siguientes:

1. Descripcion del proyecto
2. Diagrama de bloques del proyecto
3. Diagrama de circuito del proyecto

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

Descripcion del hardware
Algoritmo del proyecto (solucion)
Programa del proyecto

N o u k&

Efectividad del programa

Es muy importante para minimizar el tiempo de
desarrollo y evitar la presencia de errores en el sistema
embebido seguir los pasos listados. En cada ejemplo
presentado sera mostrado cada uno de los pasos.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays
6

Ejemplo #1: Encendido de un Led

1. Descripcion del proyecto

El documento de los requerimientos de un sistema
presenta una descripcién detallada sobre lo que el
sistema o aplicacion debe hacer, como este debe
comportarse, asi como de las restricciones y otros
factores que este debe satisfacer. Dicho documento es
fundamental para asegurar que el sistema o aplicacion
sea desarrollado para cumplir con las necesidades del
cliente. La elaboraciéon de los requerimientos del
sistema es un aspecto fundamental en el proceso de
desarrollo de un sistema embebido.

Para el ejemplo #1, el parrafo siguiente seria suficiente
para describir que desea el cliente.

Se requiere desarrollar un sistema, utilizando un
microcontrolador PIC, que garantice el encendido de
un LED cuando se mantenga presionado un pulsador
(PB). El LED debe estar apagado si el pulsador no es
presionado. Para minimizar el tamafio, peso y costo del
sistema, el reloj del sistema debera ser generado
utilizando el oscilador interno del microcontrolador.

Se deberd utilizar el compilador XC8 v2.36 de
Microchip.

2. Diagrama de bloques del proyecto

Un diagrama de bloques es una representacion visual
de las principales partes, o funciones de un sistema, las
cuales son conectadas mediante lineas que muestran la
relacion de los bloques. Es una representacion de un
alto nivel de abstraccion cuya finalidad es tener una
vision global del sistema sin tomar en cuenta los
detalles de su implementacion.

La figura 10 muestra el diagrama de bloques para el
sistema de encendido del LED. PB representa el
pulsador vy el circulo el LED.

Para el funcionamiento deseado del pulsador y del LED
se requieren algunos componentes que no son
presentados en el diagrama de bloques. El diagrama de

circuito del los

componentes.

proyecto debe presentar todos

LED

e

|
PB[II
-

MICROCONTROLADOR

Figura 10. Diagrama de bloques del proyecto
3. Diagrama de circuito del proyecto

Un paso importante en el desarrollo de un sistema
embebido es contar con el diagrama del circuito del
proyecto, en el cual se muestran los diferentes
componentes de este y como estan conectados. Este
diagrama juega un papel fundamental durante la
elaboracidn del algoritmo del proyecto, asi como en la
codificacién de la solucion.

Para el sistema de encendido del LED el diagrama es el
mostrado en la figura 11. R1 es un resistor de Pull-down
el cual, en conjunto con PB1, garantiza que al presionar
el pulsador en el pin RA4 se apliquen 5V (1 légico). R2
es un resistor utilizado para limitar la corriente que
circulard a través del diodo emisor de luz (LED, por sus
siglas en inglés). Los valores permitidos de corriente
deben buscarse en la hoja de datos del LED.

+5V A

Q
PB1
[e]

R1
10K

.
]
[
(*)]
Ll
[y
~J
(=]
(=]

Figura 11. Diagrama del circuito del proyecto

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

7

La plataforma de hardware utilizada es un
microcontrolador de 8-bit, el PIC16F1709. Desde luego,
para un proyecto tan sencillo este microcontrolador es
demasiado poderoso, lo recomendable es utilizar un
microcontrolador con los recursos necesarios para
garantizar el funcionamiento requerido. Durante la
trayectoria aprenderemos a seleccionar el
microcontrolador apropiado para una aplicacion dada.

4. Descripcion del Hardware

Es importante conocer cada uno de los componentes
que conforman el circuito del proyecto, entender las
leyes que rigen su comportamiento.

Por ejemplo, si nuestro sistema incorpora un LED
debemos revisar su hoja de datos para obtener
informacion de la corriente DC permitida a través del
componente y sobre el voltaje entre sus extremos
cuando esta encendido. Dicha informacién juega un
papel fundamental a la hora de determinar la
resistencia del resistor limitador de corriente.

Aprovecharemos este ejemplo para introducir
brevemente los componentes que conforman el
circuito del proyecto, el resistor, el pulsador, el LED. El
microcontrolador fue considerado en el apartado
“Introduccion a los microcontroladores”. Serdn
presentadas dos configuraciones ampliamente
utilizadas en los sistemas embebidos para aplicar 5V o
0V a un pin dado.

A continuacion, es presentada una descripcidon breve
de los componentes del circuito del proyecto.

e Resistor

Uno de los dispositivos mas comunes en un sistema
electrénico es el resistor el cual es un componente
disefiado para introducir una resistencia eléctrica
determinada entre dos puntos de un circuito.

La corriente eléctrica que circula a través de un resistor
esta determinada por la ley de Ohm la cual establece
qgue la corriente que circula a través de este estd
determinada por el voltaje aplicado entre sus extremos

y el valor de la resistencia del resistor. La figura 12
muestra un resistor conectado a una fuente de voltaje
de 5V.

Figura 12. Resistor conectado en serie con la fuente de voltaje

La corriente que circula a través del resistor se
determina utilizando la ley de Ohm tal como se muestra
en la ecuacion siguiente:

I = — Amperi
R mperios

Un resistor tiene una resistencia de 1 Ohm si al aplicar
un voltaje de 1V entre sus extremos a través de este
circula una corriente de 1 Ampere.

El valor de la resistencia de un resistor puede ser
determinado utilizando un multimetro o utilizando una
tabla de colores como la mostrada en la figura 13.

Generalmente trabajamos con resistores que cuentan
con cuatro bandas de colores. En la tabla también es
mostrado como proceder si el resistor es 5 0 6 bandas.

Como podemos apreciar, para el caso de cuatro bandas,
el valor de la resistencia de un resistor es determinado
de la siguiente forma:

R = (Primer digito) (segundo digito) * multiplicador.
Utilizando la tabla, determinar el valor de la resistencia

del resistor en la figura 12. Calcular el valor de la
corriente, |, en el circuito.

Primer digito 1 (café)
Segundo digito 0 (negro)
Multiplicador 100 (rojo)

R=10 x 100 = 1000Q
Es comun escribir el valor de la siguiente manera:

R =1kQ

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

4-Band Color Code j’, i [E E 25k0 *s55;
5-Band Color Code rl“ 460k *1%
L |

6-Band Color Code |

2 2760 5%

Tolerance

1stDigit 2nd Digit 3rd Digit

Temperature
Coefficient

Figura 13. Cddigo de colores para los resistores
Tomado de

La corriente a través del resistor sera:

I = 10000 — 0.005 Amperios

Es decir, la corriente que circula a través del resistor es
igual a 5 mA (miliamperios).

e Pulsador (PB)

Un pulsador es un componente que permite o impide
el paso de la corriente eléctrica cuando se presiona. Al
igual que los resistores, los pulsadores suelen estar
presentes en los sistemas embebidos.

Podemos pensar en los pulsadores que aparecen en el
panel ubicado en el interior de un ascensor o los
pulsadores en un microondas.

En la figura 14 se puede apreciar que cuando el
pulsador PB no es presionado, figura 14.a, no hay
circulacion de corriente a través del resistor.

En la figura 14.b, el pulsador estd presionado lo que
garantiza que se cierre el circuito permitiendo el paso
de la corriente.

PB

ail
T

Figura 14. Efecto de un pulsador en un circuito

Resistores de Pull-up y Pull-down

En los sistemas embebidos es comun encontrar
combinaciones de resistor + pulsador como las
mostradas en la figura 15.

+5V +5V
PB |:|l
R
A
A
R PB I:Il
GND l

GND

Figura 15. Resistores de Pull-down y Pull-up

e En el circuito mostrado a la izquierda, el voltaje en
el punto A, si el pulsador no es presionado, sera 0
voltios. Al presionar PB, el voltaje serd 5 voltios. Al
resistor se le denomina resistor de Pull-down.

e En elcircuito de la derecha, el voltaje en el punto A,
si el pulsador no es presionado, sera 5 voltios. Al
presionar PB, el voltaje sera 0 voltios. Al resistor de
le denomina resistor de Pull-up.

Las configuraciones mostradas son muy utiles cuando
es necesario aplicar 5 o 0 voltios a otras partes de un
sistema garantizando que el punto donde sera aplicado
el voltaje no quede flotante.

e Diodo Emisor de Luz (LED)

Otro dispositivo que frecuentemente aparece en los
sistemas electrénicos es el LED, una fuente de luz que
emite fotones cuando a través de este circula una
corriente eléctrica de muy baja intensidad.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

9

En la figura 16 es mostrado un circuito en el cual un LED
fue conectado en serie con el pulsador y el resistor. En
la figura 16.a el pulsador se encuentra en su estado
normal, no-presionado, lo cual impide el paso de la
corriente evitando que el LED sea encendido.

LED

2200

LED

b)

Figura 16. Circuito con diodo emisor de luz

En la figura 16.b el pulsador estd presionado
permitiendo el paso de la corriente y por consiguiente
qgue el LED sea encendido.

La ecuacion para calcular la corriente que circulard a
través del resistor y del diodo LED (estan conectados en
serie) se puede obtener aplicando la regla de Kirchhoff
para los voltajes la cual dice que la suma de las
diferencias de voltaje en un lazo es igual a cero:

Siaplicamos la regla al circuito mostrado en la figura 17,
obtendriamos lo siguiente:

+5V-Vr—-Vp=0

Vr es el voltaje entre los extremos del resistor

Vp es el voltaje entre los extremos del LED

Figura 17. Voltajes en los componentes de un circuito

Asumimos que el voltaje entre los extremos del
pulsador es cero.

La corriente que circula a través del resistor es la misma
que circula a través del diodo, por lo tanto, Vk = I*R y
tomando en consideracién dicha relacién obtenemos:

5V -V
2200

Para garantizar el funcionamiento apropiado del LED es
fundamental revisar la hoja de datos (data sheet) de
este, ahi encontraremos el valor de Vp entre otros
datos. Generalmente es indicado el voltaje Vp
relacionado con la corriente a través del LED y se debe
determinar el valor de la resistencia del resistor para
obtener la corriente requerida.

Si al revisar la hoja de datos encontramos que el voltaje
entre los extremos del LED es de 2V (Vp) al utilizar la
ecuacién para determinar la corriente a través del LED
encontramos:

520 13.6 mA

Al igual que el pulsador, el LED puede estar en uno de
dos posibles estados, encendido (ON) o apagado (OFF).

El concepto de estado es importante cuando
modelamos el comportamiento de un sistema
utilizando una maquina de estado finito. El anexo A
presente informacion sobre estd herramienta de
modelacién.

Un LED puede ser conectado a un microcontrolador en
dos formas:

v" El modo current — sourcing: el dnodo del LED es
conectado, a través del resistor, al pin de salida. El
catodo es conectado a tierra. Ver figura 17.

El modo current — sinking: el danodo del LED es
conectado a la fuente de alimentacion, a través del
resistor, y el catodo es conectado al pin del
microcontrolador. Ver figura 18.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

10

0TS4Z1IId

Figura 17. LED conectado en modo current-sourcing

i +5V

+5V

2
0
—
N
e
U
b=
o

Figura 18. LED conectado en modo current-sinking

5. Lenguaje Descripcion del Programa (PDL)

Antes de comenzar a escribir el codigo de una solucion
es recomendable contar con un algoritmo de esta ya
que esto facilita considerablemente el proceso. Se
puede utilizar un diagrama de flujo, seudocddigo o una
maquina de estados finitos entre otras alternativas.

En el anexo A es presentada una descripcion breve de
las alternativas mencionadas.

En el curso basico serd utilizado el Lenguaje de
Descripcion de Programa (PDL, por sus siglas en inglés).

Un PDL es un texto tipo inglés de formato libre que
describe el flujo de control y datos en un programa. El
PDL no es un lenguaje de programacion, es una
herramienta que ayuda al programador a pensar sobre
la légica del programa antes de escribirlo. Es una
coleccion de palabras claves que ayudan al
programador en la descripcion de la operacién de un
programa en una manera légica y gradual.

Cada descripcién de programa PDL debe ser iniciado
con la palabra START y terminado con la palabra END.
Las palabras claves en un PDL deben ser resaltadas en
negritas para hacer el PDL mds claro. También es una

buena practica dejar un espacio entre las palabras
claves y los enunciados del programa para mejorar la
legibilidad del PDL.

Los enunciados DO -- ENDDO deben ser usados cuando
se requiere crear iteraciones, o lazos condicionales e
incondicionales en un programa. Cada enunciado DO
debe ser terminado con la palabra clave ENDDO.

Otras palabras clave, tales como FOREVER o WHILE,
pueden ser utilizadas después del enunciado DO para
indicar un lazo infinito o un lazo condicional,
respectivamente.

IF, THEN, ELSE, y ENDIF deben ser utilizadas para el
cambio condicional del flujo de control en un
programa. Cada palabra clave IF debe ser terminada
con un THEN, y cada bloque IF debe ser terminado con
la palabra clave ENDIF.

PDL del ejemplo #1.

START
Configurar RAO como salida
Configurar RA4 como entrada digital
Inicializar PORTA en cero
Configurar oscilador interno a 4MHz
DO FOREVER
IF PB1 es presionado THEN
Encender LED
ELSE
Apagar LED
ENDIF
ENDDO
END

La primera parte del PDL, entre START y DO FOREVER,
es utilizada para definir las variables y para configurar
los periféricos que seran utilizados.

En el ejemplo #1 son utilizados dos pines del PORTA y
el oscilador interno el cual debe ser configurado a
4MHz.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

11

El estado del pulsador PB1 (presionado o no
presionado) debe ser indagado de forma repetitiva e
indefinida. En dependencia del resultado serd
ejecutado un bloque de cédigo. Lo anterior es indicado
entre las palabras clave DO FOREVER — ENDDO.

La decision es tomada utilizando las palabras clave IF-
THEN-ELSE-ENDIF.

Si el pulsador PB1 estd presionado entonces se debe
encender el LED, de lo contrario el LED debera
permanecer apagado.

La escritura del programa se realiza a partir del PDLy se
simplifica considerablemente como veremos durante
nuestra travesia. El algoritmo es muy importante para
obtener retroalimentacién del cliente y garantizar que
los requerimientos no presenten ambigiiedad alguna.

6. Programa del proyecto

El firmware del proyecto es desarrollado utilizando el
ambiente integrado de aprendizaje MPLAB X IDE vy el
compilador XC8. Ambos pueden ser descargados desde
la pagina de Microchip sin costo alguno.

Los pasos para seguir son listados a continuacion.

Hacer click en el icono de MPLAB X IDE
Seleccionar standalone Project

Seleccionar el microcontrolador a utilizar
Seleccionar el compilador XC8 (version x.xx)
Nombrar el proyecto y salvarlo

o u .k wWwN R

Agregar new main.c y renombrarlo main.c

En la ventana del editor aparecera lo mostrado en la
figura 19. Pronto la funciéon de cada uno de los
elementos mostrados serd explicada.

Antes de iniciar la edicidén del programa requerido para
garantizar el comportamiento deseado del diodo LED,
seran presentados los elementos que generalmente
aparecen en un programa escrito para un
microcontrolador PIC usando el compilador XC 8.

L5 3 Y - WU 5 R

m =] m

10
11
13
13

void main(void) [

return;

T

Figura 19. Area para la edicién del programa

Del algoritmo al cédigo

Un programa estd conformado por una serie de
elementos que cumplen una funcion y ocupan un lugar
en este. Para los microcontroladores PIC es necesario,
entre otras cosas, definir las palabras de configuracion,
definir las variables, inicializar periféricos, describir y
definir funciones, escribir el cédigo del cuerpo del
programa.

En la figura 20 se muestra un formato con los
principales elementos que conforman un programa
escrito para un PIC con el compilador XC8. El formato
debe ser considerado como una guia.

En el formato podemos apreciar que en la parte
superior del programa podemos incluir informacion
sobre el proyecto. Elementos importantes en esta parte
son la descripcién del proyecto, el autor, el
microcontrolador utilizado, asi como el compiladory su
version. La version del programa es un dato de mucha
importancia.

A continuacion, sera presentada una descripcion breve
de los diferentes elementos considerando el papel que
juegan en el programa. Iniciaremos con las palabras de
configuracién (CONFIGURATION WORDS) las cuales
tienen una importancia vital para el funcionamiento del
dispositivo.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

12

i R RIPTICH

HERRER AR AN RN RN N

RERHXHEREXHNAERE

(78 o B

NN N N N T N N NN NN NN N NS

Company: DIVERSAE

Aucthor:

ks

<1 m

14 /*CONFIGURATION WORDS®

16 fYHEADER FILESS

13

20 F*FUKCTION DECLARATIONS

21

22 GCLOCABRL VARTREALES DECLARATION
23

24 /*INTERRAUET SERVICE ROUTINHE (ISR
25

2& f*MATIM FUNCTION®*/

28 woid maimfwoid)

30 f*LOCARL VARTRRLES DEFINITICN*
31

32 SE*INITIALIZATIONH/

33

34

35

38

37

38 F*BODY OF THE PROGRAM

25 while{l

41 code;

43 }

45 /*FURCTIONS DEFINITIONY/

Figura 20. Formato elementos de un programa
PALABRAS DE CONFIGURACION

Los microcontroladores PIC tienen registros que
contienen los bits de configuracién. Estos bits
especifican la operacion del dispositivo tal como el
modo del oscilador, el perro guardidan (watchdog),
modo de programacion y proteccion del cédigo. Los
bits deben ser seteados correctamente de lo contrario
podria tener una falla en la ejecucién del cédigo o un
microcontrolador que no funciona.

En lo que respecta a las palabras de configuracién
(CONFIGURATION WORDS), 2 en el PIC16F1709,
tendriamos los siguientes registros:

CONFIG1: CONFIGURATION WORD 1

R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 U1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1

BOREN<1:0> _ P

FCMEN ~ IESO CLKOUTEN MCLRE PWRTE WDTE<1:0> FOSC<2:0>

bit 13 bito |

CONFIG2: CONFIGURATION WORD 2

R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 U1 U1 U1 U1 R/P-1 R/P-1 R/P-1

VP DEBUG? IPBOR BORV® STVREN PLLEN ZCDDIS PPSIWAY WRT<1:0>

bit 13 bit 0

Figura 21. Palabras de configuracion del PIC16F1709

La configuracion del dispositivo consiste en poneralo
0, en dependencia del comportamiento deseado, los
bits de las Palabras de Configuracion las cuales, en el
caso del PIC16F1709, son CONFIG1 y CONFIG2.

CONFIG1=0x05RA4
CONFIG2=0x388

config
gma config

(A1)

La directiva #pragma config permite que los bits de
configuracion del dispositivo sean especificados.

El significado de los valores asignados a CONFIG1 vy
CONFIG2 sera explicado en el desarrollo de la unidad
correspondiente.

Es importante sefalar que el programa no debe
mostrar errores o advertencias como resultado de la
compilacién. Se recomienda la compilacion del
programa a medida que las instrucciones son
incorporadas. De esa forma es mas facil percatarse
temprano si hay algun error en el codigo e identificar la
causa. Lo anterior garantiza la funcionalidad del
sistema y minimiza el tiempo de desarrollo de este.

ARCHIVOS DE CABECERA (HEADER FILES)

Los archivos de cabecera (header files) en lenguaje C
contienen un conjunto de funciones de libreria
estandar predefinidas y otras entidades. Dichos
archivos son incluidos en un programa usando la
directiva #include la cual es usada para incluir los
contenidos de otro archivo en el archivo fuente actual.
Por ejemplo, para incluir los archivos asociados a las
funciones que integra el compilador.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

13

El compilador XC8 incluye un archivo de cabecera
(header file) que es generalmente incluido en cada
archivo fuente que escribamos. El archivo es xc.h y es
un archivo de cabecera genérico que incluird los
archivos de cabecera de otros dispositivos, asi como su
arquitectura.

#include <=xc.

El archivo de cabecera <xc.h> consiste en tipos, macros
y funciones especificas para el dispositivo. Incluye
archivos de cabecera especificos para el dispositivo que
también proveen acceso a los registros de funciones
especiales. Es incluido en cada programa escrito
usando el compilador XC 8.

MACROS

En lenguaje C los macros son herramientas poderosas
gue le permiten al desarrollador definir porciones de
codigo que pueden ser reutilizables. Los macros son
definidos usando directivas del preprocesador y son
usadas principalmente para generacion y sustitucién de
codigo. Ellos presentan una alternativa para escribir
codigo compacto y eficiente, mejorando la legibilidad y
mantenimiento de los programas. Los macros son
definidos usando la directiva #define.

La sintaxis para definir un macro es la siguiente:

#define MACRO_NAME value

Cuando el compilador de C encuentra un macro en el
codigo fuente, sustituye directamente el macro con el
valor o expresién especificada. Los macros pueden ser
utilizados para realizar sustituciones textuales simples

o para definir bloques de cddigo complejos.

Si queremos legibilidad en nuestro programa podemos
utilizar la directiva #define para asignarle un nombre a
un pin particular. Por ejemplo, en el diagrama del
circuito del proyecto identificamos que el pulsador esta
conectado al pin RA4 y el LED, a través del resistor, estd
conectado al pin RAO. Usando la directiva #define
podemos, en vez de referirnos a los pines, referirnos a
los componentes conectados a ellos.

PORTAbits
PORTAbits.

De igual forma podriamos asignarle a la palabra ON el
valor 1y a la palabra OFF el valor 0.

DECLARACION DE FUNCIONES

En lenguaje C, una funcion es un bloque de cddigo que
realiza una tarea especifica y que puede ser invocada
desde cualquier parte del programa las veces que sea
necesario. Las funciones son un elemento de
construccion fundamental en Cy permiten, entre otras
cosas, la modularidad y reusabilidad del cédigo.

La declaraciéon de una funcidon es un enunciado que
define las caracteristicas esenciales de una funcidn.
Define su nombre, el tipo de valor de retorno y el tipo
de cada uno de sus parametros. La declaracion de una
funcion le indica al compilador que hay una funcion con
el nombre dado definida en algun lugar del programa.
La sintaxis para la declaracién de una funcién en C es:
Return_type Function_name (Parameters
separated by comas)

El tipo de retorno (return type) de la funcién indica que
tipo de valor es retornado una vez que la funcién ha
sido ejecutada.

No todos los elementos mostrados en el formato
formaran parte de un programa. Por ejemplo, en el
ejemplo #1 no requiere el uso de funciones y dicho
elemento no aparecerd en el programa.

DECLARACION DE VARIABLES GLOBALES

Variables en C

Una variable no es mas que el nombre de una localidad
de memoria que utilizamos para almacenar datos. En C

el valor almacenado en la variable puede ser cambiada
durante la ejecucion del programa.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

14

En dependencia de su alcance (scope) las variables
poder ser clasificadas como locales o globales. El
alcance se refiere a la visibilidad y vida de una variable
en el programa.

e Variable local: es visible solo en la funcién donde
fue declarada.

e \Variable global: es visible en todo el programa.

Entender el alcance de una variable nos ayuda a
mantener la integridad de los datos y a prevenir
conflictos potenciales en el programa.

Las variables deben ser declaradas e inicializadas antes
de ser utilizadas. La declaracién le indica al compilador
gue existe una variable con el nombre y tipos
especificados de forma que este pueda continuar con
su trabajo de compilacién sin necesidad de mas
detalles acerca de la variable.

En el ejemplo #1 no son utilizadas variables globales y
ese elemento no formard parte del programa. En
ejemplos posteriores veremos como se describen e
inicializan este tipo de variables y su impacto en el
programa.

RUTINA DE SERVICIO A LA INTERRUPCION

La rutina de respuesta a la interrupcion (ISR, por sus
siglas en inglés) es una funcidon que es ejecutada
cuando se produce una interrupcion. En el compilador
XC8 se utiliza el especificador interrupt para indicar que
la funcién es una ISR. La estructura utilizada es
mostrada a continuacién:

void int

— =rrupt () TMRO_INT(void)
{

El cédigo que sera ejecutado en respuesta a la
interrupcion se escribe entre las llaves.

En el ejemplo #1 no se utilizan interrupciones, por lo
tanto, este elemento no aparecerd en el programa. Las
interrupciones seran estudiadas en la unidad V.

FUNCION PRINCIPAL (main function)

La funcion principal es el punto de entrada en un
programa en Cy en este solo debe existir una funcion
main(). Los programas en C comienzan su ejecucion
llamando a la funcion main().

void main(void)
{ —> indica el inicio de la funciéon main ()

La primera linea de codigo en la funcion main() es la
declaracion de variables. En C todas las variables
deben ser declaradas antes de que sean utilizadas.

} —> indica el fin de la funcién main ()

En el seno de la funcidn principal tenemos la definicidn
de variables locales, la inicializacion de los periféricos y
el cuerpo del programa.

e DEFINICION DE VARIABLES LOCALES

En el ejemplo #1 no son utilizadas variables locales y
ese elemento no formara parte del programa.

e INICIALIZACION

En la parte correspondiente a la inicializacién se
configuran los periféricos que seran utilizados en la
solucidén. Para el ejemplo #1 solamente seran utilizados
dos pines del PORTA, RA4 como entrada y RAO como
salida. En esta parte del programa aparecera todo lo
descrito entes del DO FOREVER en el PDL.

La configuracion de los bits indicados se logra mediante
las siguientes asignaciones:

TRISAbits.TRISAO=0;
TRISAbits.TRISA4=1;
ANSELR=0;

BORTAR=0;

En la descripcion se indica el uso del oscilador interno
configurado a 4MHz. Eso es logrado asignando el valor
indicado al registro de control del oscilador (OSCCON,
por sus siglas en inglés). Los bits del registro OSCCON
son mostrados en la figura 22.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

OSCCON: OSCILLATOR CONTROL REGISTER

u-0

Figura 22. Registro OSCCON, PIC16F1709

R/W-0/0 R/W-0/0
SCS<1:0>
bito_ |

R/W-0/0
SPLLEN

R/W-0/0 R/W-1/1 R/W-1/1

IRCF<3:0>

R/W-1/1

bit 7

En el PIC17F1709 el reloj del sistema puede ser
generado por fuentes internas o externas lo cual es
determinado poniendo a 0 o 1 los bits
correspondientes en el registro OSCCON (SCS<1:0>).

La frecuencia del oscilador interno es determinada
poniendo a 0o 1 los bits correspondientes en el registro
OSCCON (IRCF<3:0>).

Para el ejemplo #1 se requiere trabajar con el oscilador
interno configurado a 4MHz. La siguiente asignacién
garantiza dicho requerimiento.

Nada mas que inicializar en el ejemplo #1.

e CUERPO DEL PROGRAMA

En el caso del ejemplo #1, se requiere que el LED sea
encendido cuando se presiona el pulsador PB1 y sea
apagado cuando no este presionado.

Analizando el algoritmo del ejemplo #1, identificamos
dos actividades que deben ser realizadas:

1. Elestado del pulsador (PB1) debe ser determinado,
presionado o no presionado, y tomar una decision
respecto al estado del LED (encender o apagar).

2. El estado del pulsador debe ser interrogado

repetida e indefinidamente.
Toma de decisiones en C

El lenguaje C incluye una serie de herramientas
poderosas denominadas “Enunciados de Control”.
Dichos enunciados permiten controlar el flujo de
ejecucion en los programas, permitiendo
comportamientos mas complejos y dinamicos mas alla

de una ejecucion lineal. Dos enunciados de control en
Cson:

Enunciados para la toma de decisiones: ejecutan un
blogue de cdodigo particular basado en ciertas
condiciones. Los enunciados primarios para la toma
de decisiones en C son el if, if-else, y switch.

Enunciados para la ejecucion de lazos (loops):
usados para ejecutar repetidamente un bloque de
codigo hasta que una condicién dada es cumplida.
C provee tres tipos de lazos: for, while, y do-while.

El enunciado (statement) mdas simple para tomar
decisiones es el if. La sintaxis es la siguiente:

if(expresion)
{
statements;

}
Siguiente instruccion;

El enunciado if evalua la expresion entre los
paréntesis. Si la evaluacién es verdadera las
instrucciones en el cuerpo del if son ejecutadas.

Si la evaluacién es falsa las instrucciones en el
cuerpo del if no son ejecutadas y el programa salta
a Siguiente instruccion.

Las expresiones son escritas con la ayuda de
operadores. Por ejemplo, usando el compilador XC8,
podriamos escribir para el circuito de la figura 9:

if (PORTAbits.RA4==])
{
PORTAbits.RAC=]1;
El simbolo == es un operador relacional y tiene el

significado “igual a”. El cédigo anterior le indica al
compilador que:

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

16

e Sielvaloren el pin RA4 esigual a1 (5V) entonces el
pin RAO debe ser puesto a 1 (5V). Dado que el LED
esta conectado, por medio del R2, al pin RAO al
aplicar a dicho pin 5V hard que el LED se encienda

(ON).

Si el valor en el pin RA4 es OV la instruccion entre
paréntesis no debe ser ejecutada.

El enunciado basico if puede ser extendido para tener
mayor flexibilidad. La ampliacidén genera el enunciado

if-else cuya sintaxis es la siguiente:

if(expresion)
{
Statementl;
}
else
{

Statement2;

}

Si la expresion es verdadera, el codigo en el cuerpo
del enunciado if es ejecutado y el codigo en el
cuerpo del enunciado else obviado (no ejecutado).

Si la expresion es falsa, el cédigo en el cuerpo del
enunciado else es ejecutado y el codigo en el
cuerpo del if es obviado (no ejecutado).

Por ejemplo, usando el compilador XC8, podriamos
escribir para el circuito del ejemplo #1:

if (PORTAbits.RA4
{
PCRTAbits.RATU=]1;

-.-—1_]

else
{
PORTAbits.RACL

-r

El cédigo anterior le indica al compilador que:

e Sjelvalorenelpin RA4 esiguala1(5V) entonces el

pin RAO debe ser puesto a 1 (5V). Dado que el LED

estd conectado, por medio del R2, al pin RAO al
aplicar a dicho pin 5V hard que el LED se encienda
(ON).

Si el valor en el pin RA4 es OV ejecutar el codigo en
el enunciado else, es decir, poner a 0 el pin RAO.

En el ejemplo #1, el estado de RA4 debe ser

monitoreado de forma repetida e indefinidamente.

Podemos utilizar uno de los enunciados utilizados

para ejecutar repetidamente un bloque de cddigo.

Por ejemplo, el while-loop. La sintaxis general es:

while(condicién)
Cuerpo del loop;
Incrementar o decrementar;

}

El loop while consiste en una condicion de control y

se ejecuta mientras la condicidn sea verdadera. El
codigo en el cuerpo del loop while es ejecutado
después que la condicion es ejecutada.

evaluada al inicio. Si el resultado de
evaluacion es falso no se ejecutan el cddigo

entre las llaves. Mientras el resultado de la
evaluacion sea verdadero el cédigo entre las

llaves es ejecutado repetidamente.

Si deseamos que un bloque de cédigo sea
ejecutado repetidamente de forma indefinida

podemos utilizar cualquiera de las siguientes

alternativas:

while(1) for(;;)
{ {
Statementl; Statementl;
Statement2; Statement?2;
} }
while loop for loop

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

17

La condicién para continuar en el lazo es

Cddigo del cuerpo de la funcién principal:

while (1)
{
if (PORTAbits.RA4==]
{
PORTAbits.RAD=]1;

m

PORTAbits.E

La condicién siempre serd verdadera (1), y el cédigo
entre las llaves se ejecutara indefinidamente.

DEFINICION DE FUNCIONES

La definicién de una funcién muestra el nombre de la
funcion, el nimero y tipo de parametros que espera
recibir, y su tipo de retorno. La definicion de la funcién
también incluye el cuerpo la funcion con la declaracion
de las variables locales, y los enunciados que
determinan que hace la funcidn. La sintaxis es la
siguiente:

Return_type Function_name(Parameters —separated
by comas)
{
Cddigo;
}

El bloque de cddigo entre las llaves es llamado cuerpo
de la funcién (function body).

En el ejemplo #1 no se utilizan funciones y el elemento
FUNCTION DEFINITION no aparecera en el programa.

A continuacién, el programa es mostrado por partes.

En la primera parte aparecen, en el orden listado, las
palabras de configuracidn, el archivo de cabecera
<xc.h>y los macros utilizados para definir simbolos que
dardan mayor legibilidad al programa. Con las
definiciones mostradas en vez de escribir, en el cédigo
en el cuerpo del programa, PORTAbits.RA4 podemos

escribir PB1. Algo similar con PORTAbits.RAQ, podemos
escribir simplemente LED.

18 agma config CONFIG1=0x(08a4
19 ma config CONFIG2=0x3883
20
21
22
23
24
25 #d

[n]

La segunda parte contiene la inicializacion, en este caso
de los registros del PORTA y del registro OSCCON.

27 void main(void)

8 {

29 TRISAbits.TRI

30 TRISAbits.TRISA4=]1;
31 ANSELA=0;

32 TA=0;

33

34 DSCCON=0x68;

La tercera parte contiene el cuerpo del programa y
contiene el cédigo que serda ejecutado repetitiva y
continuamente.

wnile (1)

37 {

38 if (PORTRbits.RR4==]1)
39 {

40
41
42
43
44
45
46
47

PORTAbits.RAD=]1;

m
m

LRR0=0;

PORTAbits

Figura 23. Cédigo para el encendido de un LED

Una vez finalizada la edicion del codigo se procede a su
compilacién. El resultado no debe mostrar errores
(errors) o advertencias (warnings).

En la figura 24 es presentado el resultado de la
compilacién del programa correspondiente al ejemplo

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

18

#1. Como se puede apreciar no se reportan errores o
advertencias. Si estuvieran presentes, el compilador
nos brinda la informacidon necesaria para identificar
dénde se cometié el error o el porqué de las
advertencias.

El compilador utilizado es el XC8, version 2.36.

make =f nbproject/Makefile-default.mk SUBPROJECTS=
make[1l]:

make

LEAN SUCCESSFUL
-build-conf

Entering directory 'C:/Users/alxof/OneDrive/DIVERSAR_ESD/DIVERSA
EJ 1.3
'C:/Users/alxof/OneDrive/DIVERSA ESD/DIVERSA

}-cc.exe"

=£ nbproject/Makefile-default.mk dist/default/production/UI
make [2] :

Entering directory

"C:\Program Files\Microchip\ -mcpu=1€LF170% -c

"C:\Program Files\Microchip\xc }=cc.exe” -mcpu=l€LFl7035 =Wl

Memory Summary:

Program space used 1Ch | 28) of 2000h words (0.3%

Data space used 2h | 2) of 400h bytes (0.2%

EEPROM space None available

Configuration bits used 2h | 2) of 2h words (100.0%)

ID Location space used 4h 4) of 4h bytes (100.0%
make[2] : Leaving directory 'C:/Users/alxof/OneDrive/DIVERSA ESD/DIVERSR E
make[l]: Leaving directory 'C:/Users/alxof/OneDrive/DIVERSA_ESD/DIVERSA E
Loading code from C:/Users/alxof/CneDrive/DIVERSA_ ESD/DIVERSA_ESD_CURSOS_

Program loaded with pack, PIC12-1€Flxxx DFP,1.3.50,Microchip
Loading completed

Figura 24. Resultado de la compilacién con XC8

Se debe evitar la presencia de advertencias (warnings)
ya que, aunque el programa al inicio puede funcionar
con el tiempo pueden aparecer bugs que afectaran su
buen funcionamiento.

Efectividad del programa

Una vez que el programa ha sido editado y compilado
es necesario verificar la efectividad de este. Existen
diferentes alternativas, unas basadas en software como
son los simuladores tales como PROTEUS y otras
basadas en hardware, como son las tarjetas de
desarrollo como el EASYPIC o el sistema mismo
ensamblado en una tabla de nodos.

En el desarrollo del curso para verificar la efectividad de
los programas escritos serd utilizado PROTEUS en
primer lugar y posteriormente la tarjeta de desarrollo
EASYPIC v7. En ciertos momentos, con el fin de
ejemplificar algunos detalles respecto a la optimizacion
del cddigo, utilizaremos el simulador que incorpora
MPLAB X IDE.

Por lo tanto, las tres alternativas son:

e Suite PROTEUS
e EASYPICV7
e Simulador incorporado en MPLAB X IDE

En el anexo D seran presentados los aspectos basicos
de las herramientas mencionadas.

e e o Fe e o e e e e o de sk e e e e ke e e g ke e e e e ke ke e e g ok e e e ok e ke e e e ke e e e ke ke e e e ke ke e e e b e e e ke ke e e ek e e e ke ke ke ek kb e e e ke e ek ke ke e e e ke ke e ke ke ke ke ok

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

19

7.1 Simulaciéon con PROTEUS

El poder simular el circuito del proyecto antes de
ensamblarlo en una tabla de nodos o en un circuito
impreso es fundamental tanto para garantizar la
efectividad del sistema como para reducir el tiempo de
desarrollo.

La simulacién permite probar nuestro sistema mientras
obtenemos los componentes requeridos para
implementar la solucidon. También permite realizar
experimentos, por ejemplo, del tipo “qué pasa si?” lo
gue permite conocer la respuesta del sistema ante
determinadas condiciones.

PROTEUS nos permite la simulacion de un circuito
mediante software y lo primero que debemos hacer es
construir el esquematico del circuito. PROTEUS cuenta
con una amplia libreria con los modelos de cientos de
componentes entre los que destacan los
microcontroladores, plataforma de hardware utilizada
en el curso para implementar un sistema embebido.

La figura 25 muestra el esquematico, elaborado en
PROTEUS, para el sistema de encendido del LED. Al
realizar la simulacion podemos observar que mientras

no se presione PB1 el LED no es encendido.
220R

1
R
LED
T+5V
— 12 RAODICSPDAT RCO %
= RAMICSPCLK RC1 f—
® ~— Ra2 RC2 f—=+
—— RAIMCIRVPP RC3 f——
=— RA4 RC4 |-
—=— RAS RC5 |—=—
RC8 [
10K % RB4 RCT
T RBS
e RB&
2 1 Rre7
- PIC16F1709

Figura 25. Esquema elaborado en PROTEUS

Los esquematicos para cada uno de los ejemplos
presentados en el curso estaran disponibles para que
los estudiantes puedan realizar la simulacién sin tener
gue invertir tiempo en la creacién de este lo cual les
permitird concentrarse en la elaboracion del cédigo.

Para realizar la simulacion utilizando PROTEUS:

Hacer click en el icono de PROTEUS
Abrir el esquematico correspondiente al ejemplo
bajo estudio.

3. Hacer click derecho sobre el microcontrolador y en
editar propiedades:
e Ajustar la frecuencia a 4MHz
e Cargar el archivo HEX ubicado en la carpeta del

proyecto.
4. Activar la simulacion, ver figura 25.

@ Circuito 2 - Proteus 8 Professional - Schematic Capture
File Edt View Tool Design Graph Debug Library Template System Help
DEED AEONRADR~R O
£ Schematic Capture X

2R LEDRED

& F B

< sV
L./ t
o P
%) PB1 q .:_ﬁ_ uucsvcu(' :Cq; j
A . rm Re2 -1
s =] pauiRTVPP RCY
@] ras ros [+
21 'oas RS |5
/ 10K EFN oY i
o rm 8o
@] Ree
D ol RB7
® < PIC16F1709
A
s o
+ Iniciar
simulacion
// presionar aqui.
»
> b Il m O ROOT - Roct sheet 1

Figura 25. Inicio de la simulacién en PROTEUS

Mientras la simulacién esté activa, podemos manipular
los valores o el estado de algunos de sus componentes
y observar la reaccion del sistema.

En el esquema del ejemplo #1, una vez inicializada la
simulacion, podemos presionar el pulsador PB1 y
observar la respuesta del sistema. Si todo esta correcto,
el LED sera encendido mientras PB1 este siendo
presionado, es decir, el LED permanecerd en su estado
encendido (ON), tal como se muestra en la figura 26.

Si dejemos de presionar a PB1, el LED pasar a su estado
apagado (OFF).

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

I—
o

]
o

RAQ/ICSPDAT
RA1/ICSPCLK
——1 RA2
RA3MCLRNVPP
RA4

RAS

RCO
RC1
RC2
RC3
RC4
RC5
RCE
RC7

o

N

u
~

u
(=2}

m5

]
[==]

u
el

RB4
RB5
RB6
RB7

PIC16F1709
Figura 26. Simulacién de un circuito en PROTEUS

El resultado seria el mismo si en el

cambiamos el codigo:

programa

36 while (1)

37 {

38 if (PORTAbits.RR4==]1)
39 {

40
41
42
43
44
45
46

=i

PORTAbits.RA

m

-

PORTAbits.RAO=0;

por el cddigo:

36 while (1)
37 {

38
35 {

40 LED=ON;

43 {
44 LI OFF;
45

Es importante destacar que los modelos presentados
por PROTEUS no presentan los pines del
microcontrolador tal y como estos estdn dispuestos en
el dispositivo real. Ver figura 27.

U1

RAO0/ICSPDAT
RA1/ICSPCLK
RA2
RA3/MCLR/VPP
RA4

RA5

N
©
N
(o]

RCO
RC1
RC2
RC3

-
0o
=
o

-
2
N
N

RC5
RC6
RC7

—
W

RB4
RB5
RB6
RB7

PIC16F1709

—
N

o
(@]
[
(2]
A
[N
|
(=]
(Y]

N
ey

s
(=]

Modelo PIC16F1709
PROTEUS

PIC16F1709
Asignacion de pines

Figura 27. PIC16F1709 y su modelo en PROTEUS

Debemos tener presente dicha situacion a la hora de
trazar las pistas del circuito impreso (PCB, por sus siglas
en inglés).

El esquema para la simulacién en PROTEUS y el video
de la simulacién estan en:

El esquema para el ejemplo #1 encuentra en
UNIDADII — PROTEUS — ESQUEMAS — UlI_EJ_1.

El video para el ejemplo #1 se encuentra en
UNIDADII - PROTEUS — VIDEOS — Ull_EJ_1

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

21

7.2 Verificacion con el EASYPIC v7

A diferencia del simulador del MPLAB X IDE y de
PROTEUS, el EASYPIC v7 es una tarjeta de desarrollo
gue nos permite verificar la efectividad del programa
utilizando componentes reales. La versidon utilizada en
el curso soporta mas de 350 microcontroladores PIC de
8-bit los cuales van desde 8 pines hasta 40 pines.

En la figura 28, el contorno amarillo encierra las bases
que permiten el uso de los diferentes
microcontroladores. El empaquetado de los
microcontroladores debe ser PDIP.

Figura 28. Mds de 350 microcontroladores PICs

El EASYPIC v7 cuenta con una serie de switches
mediante los cuales se puede configurar la tarjeta para
qgue funcione apropiadamente en dependencia del
numero de pines del microcontrolador o en
dependencia de si se utilizara un cristal o el oscilador
interno de este.

En la figura 29 estan remarcados algunos de los
recursos, integrados en el EASYPIC v7, que facilitan la

verificacion de la efectividad de un programa.

Entre otros recursos destacan los siguientes:

Pulsadores (Pushbutton)

Diodos emisores de luz (LED)

Dip Switch para cada puerto

Potenciémetros para generar sefiales analégicas (2)
Sensores de temperatura (DS18B20, LM35)

Siete segmentos (7 SEG)

Pantalla de cristal liquido (LCD)

e Interfaz para comunicacion UART y USB

' DIP SWITCH

LIQUID CRYSTAL DISPLAY |

” '

Figura 29. Recursos en el EASYPIC v7

Para ejecutar el programa utilizando EASYPIC v7 seguir
los siguientes pasos:

1. Configurar el EASYPIC v7 de acuerdo con el nimero
de pines del microcontrolador PIC17F1709 vy
tomando en cuenta que sera utilizado el oscilador
interno.

2. Colocar el microcontrolador en socket
correspondiente.

3. Conectar el EASYPIC v7 a la computadora mediante
el cable USB vy energizar la tarjeta. Deberd
encenderse el led amarillo (LINK)

4. Abrir el mikroProg Suite for PIC y cargar el archivo
.hex (LOAD) correspondiente al ejemplo #1.

5. Grabar(WRITE) el archivo .hex en el
microcontrolador.

6. Proceder con la verificacidn del funcionamiento del

programa.

En el ejemplo #1, encendido de un LED, debemos
presionar el pulsador (Pushbutton) etiquetado como

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

22

RA4 vy, si el programa esta correcto, el LED etiquetado
RAO debera encenderse. Ver figura 29.

TRmmmanmm e
ARSI o,
Ty h ,,._,

Figura 29. Pulsadores y Leds del PORTA en el EASYPIC

En la figura 30 podemos apreciar, en la parte izquierda,
que cuando no se presiona el pulsador el LED
permanece apagado. En la parte derecha cuando se
presiona el pulsador, se enciende el LED conectado en
RAO y permanecerd en ese estado mientras el pulsador
esté presionado.

Figura 30. Usando el EASYPIC v7 para probar el cédigo

Durante el desarrollo del curso el EASYPIC v7 y sus
recursos seran presentados con detalle ya que es la
principal herramienta para probar la efectividad de los
programas. El EASYPIC es una herramienta basada en
hardware y nos permite trabajar directamente con el
microcontrolador de nuestro interés.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays
23

7.3 Simulador del MPLAB X IDE

El simulador de MPLAB X es un simulador de eventos
discretos para dispositivos tales como:

e Las familias de microcontroladores PIC

e Las familias de Controladores de sefiales digitales

dsPIC

El simulador, integrado en el MPLAB X IDE, es una
herramienta disefiada para modelar la operacion de los
microcontroladores de Microchip como soporte en el
proceso de depuraciéon (debugging) del software
elaborado para estos dispositivos. Una vez editado el
programa basta con presionar la tecla indicada en la
figura 31 para comenzar la simulacidn del programa.

Tools Window Help

v e

“ra

> S

1aBXStore x| @ mainc x|

- -y
s —

'é—:bi\@ E 0

| Debug Project (LedEncendidoPB) |

Figura 31. Iniciar simulacién con el simulador de MPLAB X

En la figura 32 es mostrada la pantalla que aparece
cuando se inicia la simulacion. En la parte inferior se
puede apreciar que se han incluido los pines de entrada
y salida correspondientes al ejemplo #1. RA4 aparece
etiguetada como entrada digital (Din) y RAO como
salida digital (Dout). En dicha figura RA4=0 y por lo
tanto el LED (RAO) permanece en 0.
void main(veid)
El %

TRISAbits.T
TRISAbits.T

N=0x68;

while(l)

38 {

if {FB1=1)
40 {

LED=1-
Lel=dy

1/0 Pins x| Call Stack Breakpoints

Mode
Din
Dout

Figura 32. Ejemplo con el simulador de MPLAB X IDE

Value
@0
@0

En la figura 33 el valor de RA4 fue cambiado a 1. En |la
linea 39 como PB1 es igual a 1 se ejecutara la
instruccion de la linea 41 poniendo a 1 RAO (pin donde
estd conectado el LED).

28
R
30
31
32
33
34
35 OSCCON=0x68;
36
37 while (1)
38 {

void main (void)

B

if(PE1=—1)
a0 {

41
az
43
a4 {
45
16

IED=1;
else

LED=0;

48

Qutput I/0 Pins x| Call Stack Breakpoints

Value
@1
& 1

Mode
Din
Dout

Figura 33. Ejemplo con el simulador de MPLAB X IDE

Durante el desarrollo del curso, las herramientas
presentadas seran utilizadas para probar la efectividad
de los programas. Los recursos que nos ofrecen seran
mas evidentes en la medida que los problemas a
resolver sean mas complejos.

e e o Fe e o e e e e o de sk e e e e ke e e g ke e e e e ke ke e e g ok e e e ok e ke e e e ke e e e ke ke e e e ke ke e e e b e e e ke ke e e ek e e e ke ke ke ek kb e e e ke e ek ke ke e e e ke ke e ke ke ke ke ok

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

24

Ejemplo #2: Activacion motor DC, vl

Continuaremos nuestro camino desarrollando el
ejemplo #2 el cual, al igual que el ejemplo #1, servira
para introducir nuevos elementos de hardware vy
software que vendran a fortalecer nuestra caja de
herramientas necesarias para el disefio e
implementacion de un sistema embebido.

1. Descripcion del proyecto

Se requiere el desarrollo de un sistema, basado en un
microcontrolador, que permita la energizacion de un
motor DC pequefio cuando dos pulsadores sean
presionados simultdneamente. Un LED debera ser
encendido cuando el motor esté energizado. El reloj del
sistema debe ser implementado con el oscilador
interno del microcontrolador. Si uno o ambos
pulsadores no son presionados, el motor y el LED deben
ser desenergizados.

2. Diagrama de bloques del proyecto
La figura 34 muestra el diagrama de bloques del

proyecto y podemos apreciar la presencia de un nuevo
componente, un motor.

LED

e

10_
pe1 L |

PB2 Ello—
O MOTOR

©

MICROCONTROLADOR

MOTOR
DRIVER

Figura 34. Diagrama de bloques del proyecto
3. Diagrama de circuito del proyecto

La figura 35 muestra el diagrama de circuito para el
ejemplo #2. La mayoria de los componentes que
conforman el circuito fueron presentados en
Descripcion del Hardware del ejemplo #1. Dos nuevos
componentes, el transistor BJT y el MOTOR DC, forman
parte del sistema.

+5V

=
D
60£T49T2Id

TRANSISTOR
BJT

Figura 35. Diagrama del circuito del proyecto
4. Descripcion del Hardware

El pulsador, el resistor y el diodo LED fueron
presentados en el ejemplo #1. En el proyecto actual
aparecen dos nuevos elementos un motor DC y un
transistor BJT. A continuacién, serd presentada una
descripcion breve del transistor BJT y el motor DC.

e Transistor BJT

Un transistor de union bipolar (BJT, por sus siglas en
inglés) es un componente electronico fundamental que
puede amplificar una corriente o actuar como un
switch. Esta hecho de un material semiconductor y
tiene tres terminales: base, colector y emisor.
Aplicando una corriente pequefia en la base podemos
controlar una corriente mayor que circula entre el
colector y el emisor. Existen dos tipos principales, NPN
y PNP, y aunque difieren en su construccion ambos
trabajan de igual forma. Los transistores BJT son
ampliamente utilizados en diferentes dispositivos
electrénicos tales como amplificadores, switches, y en
circuitos integrados complejos. La figura 36 muestra los
simbolos de los transistores NPN y PNP.

(o E

E Cc

NPN PNP

Figura 36. Simbolos de los transistores BJT.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

En los sistemas embebidos el transistor es utilizado,
principalmente, como switch. La idea basica es la
siguiente:

Switch Abierto: El transistor debe estar en su regién de
corte, en la cual no circula corriente entre colector y
emisor actuando como un switch abierto. Esto se logra
aplicando un voltaje igual a cero en su base.

Switch cerrado: El transistor debe estar en su regién de
saturacidon permitiendo que la corriente maxima circule
entre colector y emisor actuando como un switch
cerrado. Esto se logra aplicando suficiente voltaje en su
base.

En esencia, una pequena corriente en la base controla
una corriente mayor entre colector y emisor, haciendo
qgue el transistor se comporte como un switch
controlado por corriente.

Para implementaciones practicas, necesitaremos
componentes adicionales tal como resistores para
controlar la corriente de base apropiadamente.

En la figura 37 se muestra un circuito en el cual el
transistor actla como un switch abierto.

v" Cuando el switch estd en la posicion 2, en la base

del transistor se aplican OV y el transistor actua
como un switch abierto.

Figura 37. Transistor como switch abierto.

En la figura 38 se muestra un circuito en el cual el
transistor actua como un switch cerrado.

Figura 38. Transistor como switch cerrado.

v Cuando el switch estd en la posicidn 1, se aplican 5V
en el extremo izquierdo del resistor lo cual provoca
qgue circule una corriente en la base del transistor
cuyo valor puede ajustarse, mediante el resistor en
la base, de forma que el transistor entre en su
region de saturacion actuando como un switch
cerrado.

Motor DC

Un motor DC es una maquina que utiliza corriente
eléctrica directa (DC) para rotar. Funciona usando
magnetismo: la electricidad crea campos magnéticos, y
dichos campos mueven partes del motor para hacerlo
rotar. Los motores DC son comunes en muchos
dispositivos, desde herramientas de potencia a
abanicos de computadoras.

En una implementaciéon practica se requerird de un
manejador (driver) para el funcionamiento adecuado
del motor. El manejador funciona como un traductor
entre el controlador y el motor DC.

Si el controlador es implementado usando un
microcontrolador la corriente que este puede
suministrar no es suficiente para suplir la requerida por
el motor. El manejador actia como un amplificador
tomando la sefial pequefia del microcontrolador vy
convirtiéndola en una sefal alta corriente para manejar
el motor. En breve, un manejador para un motor DC es
esencial para controlar un motor DC efectiva vy
seguramente cuando utilizamos microcontroladores.

En la figura 35 podemos ver que la activacién del motor
es controlada desde el pin RB4. Si el pin RB4 es puesto
a cero, el transistor actia como un switch abierto vy el
motor no es activado. Si el pin RB4 es puesto a 1 (5V) el
transistor actuara como un switch cerrado permitiendo
la circulacion de corriente y por ende la activacién del
motor.

5. Lenguaje Descripcion del Programa (PDL)

El siguiente algoritmo se recoge el requerimiento de
gue ambos pulsadores deben ser presionados
simultdneamente, mostrado en letras rojas, para que el
motor sea energizado.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

26

START

Configurar RA4 y RA5 como entradas
Configurar RAO y RB4 como salidas
Inicializar PORTA y PORTB en cero
Configurar oscilador interno a 4MHz
DO FOREVER
IF PB1 and PB2 son presionados THEN
Encender LED
Energizar MOTOR
ELSE
Apagar LED
Desenergizar MOTOR
ENDIF
ENDDO

END

6.

Programa del proyecto

La primera parte del programa muestra....

19
20
231
22
23
|
i
26
27
28

En |

30
21
32
33
34
33
36
37
38

fpragma config CONFIG1=0x0Ba4d
#pragma config CONFIG2=(0x3BE83
$include <xc.h
$fdefine PBEZ PORTAbits.RAS
$#define PB1 PORTARbits.RAad
$fdefine LED PORTAbits.RAD
$#define MOTCE PORTBbits.EREB4
$define oM 1
#define CEF 0
a segunda parte del programa
void main(void)
{
TRISER=(x3E;
ANSELR=(0;
PORTRE=0;
TRISBbits.TRISB4=0;
ANSELB=0;
PORTE=0;
OSCCoN=0x68;

La tercera parte del programa

40 while (1) infinite loop
41 {

42 if((PB1—1) £& (PB2
43 {
izt

5

46 }
257 else

48 {

35 MOTCR=0FF;

=0 LED=0FF

51
52 }
53

fa—

En la codificacién del algoritmo podemos utilizar el
operador légico AND (&&) el cual es un operador
binario dado que opera sobre dos elementos de datos.
El operador && combina dos expresiones ldgicas- es
decir, dos expresiones que tienen un valor verdadero o
falso (1 0 0).

En el ejemplo #2 podemos escribir el siguiente
enunciado:

if((PB1==1) && (PB2==1))
{
codigo;

}

La expresion es verdadera si ambas expresiones son
verdaderas (PB1 estd presionado y PB2 esta
presionadol) lo cual llevard a la ejecucion del cddigo
entre las llaves del if. Si una o0 ambas expresiones son
falsas, el resultado de la operacidon es falsa. No se
ejecutara el cddigo entre las llaves del if.

Otro operador légico es el OR (| |) y sera presentado en
el ejemplo #3.

En la figura 39 se muestra el programa para controlar la
activacion del motor DC. Las palabras de configuracion
CONFIG1 y CONFIG2 se mantienen igual que en el
ejemplo #1. Entre la linea 23 y 28 se han definido una

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

27

serie de constantes simbdlicas con el objetivo de hacer
mas legible el codigo.

Las asignaciones entre las lineas 32 y 37 se inicializan
los puertos involucrados en la solucion y en la linea 38
se configura el oscilador interno a 4MHz.

En la linea 40 utilizamos el while(1) para generar un lazo
lo cual permitira la ejecucion del cédigo entre las llaves
del while de manera infinita.

En la linea 42 se utiliza el operador légico AND (&&)
para determinar si ambos pulsadores son presionados
simultdneamente. Si el resultado es verdadero, el
motor sera energizado y el LED encendido. En caso
contrario se ejecutara el codigo en el cuerpo del else lo
que harda que el motor sea desenergizado y el LED
apagado.

15 fpragma comfig CONEIGl=0x0BA4
20 fpragma comfig COMFIG2=0x3HBB2
21

22 1

23 PORTALits . BRES

21 PORTALits.RAa4

25 O PORTRbics BED

6 fdefine MOTOR PORTBbits. RB4
=7 fdefine O 1

ZB fdefine OFF 0O

g

30 woid main (void)

a1 i

32 n
33 1
24 =
35 TRISBLit=. TRIZEL=0;

1 ANIELE=D;

7 DORTE=0;

28 J2ICCOM=0xEB; 2090 S /Inzer Z
25

40 while (1] n 1

41 i

4z if[(FBE1=1} && (EEZI=1}}
41 {

44 MOTOR=0M;

45 LEC—IH

L1 B

a3 else

44

45

50

51 i

52

Figura 39. Programa activacién de motor DC

7. Efectividad del programa

Utilizaremos PROTEUS para verificar la efectividad del
codigo elaborado. La figura 40 muestra el esquema del
circuito.

220R

:

+5V

U1

RAO/ICSPDAT
RA1/ICSPCLK

RCO
RC1
RC2

=

® ®
PB1 [I PB2 [I

[

10k | | 10Kl |

[+ RAZ___
RA3MCLRVPP

RA4
RAS

RC3
RC4
RC5
RC6
RC7

&= o joo

N= MUH

RB4
RB5
RB6
RB7

PIC16F1709

1k &
p—
T

Figura 40. Esquema del circuito ejemplo #2

En las figuras 41 y 42 se muestra el resultado cuando
solamente uno de los pulsadores esta presionado. En
ambos casos la expresion no es verdadera y por lo tanto
no se ejecuta el cédigo en el cuerpo del if, se ejecuta el
del else.

w 220R o

+5v

U1

RAO/ICSPDAT
RA1/ICSPCLK
RA2
RA3/MCLRAVPP

RCO
RC1
RC2

RC3
RC4
RC5
RC8
RC7

Q1
2N3904

PIC16F1709

1k

[l
L

+5V

U1

RAQ/ICSPDAT
=== RA1NICSPCLK
RA2

== RA3MCLR/NPP
RA4

RAS

[]
&

RCO
RC1
RC2
RC3
RC4
RC5
RC6
RC7

[]
o

[]
=

[]
~

u
&

=l

]
o

of

Q1

2N3904

RB4
==— RB5
RB6
RB7

PIC16F1709

& 1k

—T

Figura 42. Solamente PB2 es presionado

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

28

En la figura 43, ambos pulsadores son presionados y se
puede apreciar como el pin RB4 estd rojo indicando que
hay 5V. El LED esta encendido y el motor girando lo cual
puede ser visto en el video.

m 220R o

[] []
+5V

U1 -

RAO/IICSPDAT RCO o=
RATICSPCLK RC1
RA2 RC2
=== RAIMCLR/IVPP RC3

RA4 RC4
RAS RC5

L] [] RCE [T

s RCT =2 Q1
10k 10k 1251 rps 2N3904
11
1 res
5 . RBT

PIC16F1709

n 1k =
L

Figura 43. Ambos pulsadores estan presionados

Se ponen a disposicion del estudiante el esquema del
circuito para su simulacién en PROTUES y el video de la
simulacion para ver los pasos seguidos en la
verificacion.

e El esquema para el ejemplo #2 encuentra en
UNIDADII — PROTEUS — ESQUEMAS — Ull_EJ_2.

e El video para el ejemplo #1 se encuentra en
UNIDADII - PROTEUS — VIDEOS — Ull_EJ_2

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays
29

Ejemplo #3: Activacion motor DC v2

1. Descripcion del proyecto

Se requiere el desarrollo de un sistema, basado en un
microcontrolador, que permita la energizacion de un
motor DC pequeio al presionar uno, o los dos, de dos
pulsadores. Un LED deberd ser encendido cuando el
motor esté energizado. El reloj del sistema debe ser
implementado con el oscilador interno del
microcontrolador.

El diagrama de bloques y el diagrama de circuito del
proyecto son similares al del ejemplo #2. Dado que no
hay componentes nuevos en el sistema, para aclarar
dudas respecto a los componentes ver la descripcidon
del hardware del ejemplo #2.

5. Lenguaje Descripcion del Programa (PDL)
El algoritmo permanece igual excepto la primera linea
después del DO FOREVER:

START
Configurar RA4 y RA5 como entradas
Configurar RAO y RB4 como salidas
Inicializar PORTA y PORTB en cero
Configurar oscilador interno a 4MHz
DO FOREVER
IF PB1 or PB2 son presionados THEN
TURN ON LED
TURN ON MOTOR
ELSE
TURN OFF LED
TURN OFF MOTOR
ENDIF
ENDDO
END

6. Programa del proyecto

Para implementar el codigo requerido en el compilador
XC8 podemos utilizar el operador légico OR (] |) el cual
cubre la situacién cuando necesitamos chequear si una
de dos o mas condiciones es verdadera. Si uno o ambos
operando del operador es verdadero, el resultado es
verdadero. El resultado es falso cuando ambas
expresiones son falsas.

fpragma config CONEIG1=0xOAA4

20 frragma config CONEIGI=0x28B2
Z1

23 finciude h

za fdefin= FEZ PORTAbits REJ
23 Fdefine FE1 PORTALits.Ra4
25 fdefin= LED PORTRbits . PAD
26 fdefine HOTIR PORIBbits.RB4
27 fdefine OF 1

28 fdefine OFF O

b}

a6

a1

32

33

a4

35 TRISEBbit= _ TRIZE<S=0;

36 ENIELE=0;

a7 SORTE=0D;

a8 SICCOE=0x€8; 2 [f/Inzer
e

40 while (1] o

41 {

4z if[(EB1==1} || (FEZ==1}}

42 {

Para el ejemplo #3, la linea 42 del programa tiene la
siguiente forma:

if (PB1==1) || (PB2==1))

El cddigo en la linea 42 le indica al compilador que si
PB1, o PB2, es presionado el motor y el LED deben ser
energizados. Si los dos pulsadores son presionados
simultaneamente el motor y el LED también serdn
energizados.

7. Efectividad del programa

Utilizaremos PROTEUS para verificar la efectividad del
codigo elaborado. La figura 44 muestra el esquema del
circuito.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

30

220R

:

U1
® ® 19 16
IE] RAO/ICSPDAT RCO T
PB1 PB2 7] RA1ICSPCLK RC1 BEEL
[+ e RA2 RC2 T
=] RAIMCLR/VPP RC3 =
> RA4 RC4 —5
RAS RC5 _8
2 . =N

RB4
RB5
RB6
RB7

PIC16F1709

RC7

|I\J

=

1
10k 10K! !

1k

Figura 44. Esquema del circuito ejemplo #2

En las figuras 45 y 46 se muestra el resultado cuando
solamente uno de los pulsadores esta presionado. En
ambos casos la expresion es verdadera y por lo tanto
sera ejecutado el cadigo en el cuerpo del if.

+5V

U1

— RA0iCSPDAT

RA1/ICSPCLK

1=

RAIMCLRIVPP
RA4

2= Ras

[]
o

RCO
RC1
RC2
RC3
RC4
RC5
RC8
RC7

[]
jon

[]
~

[]
I~

[
G

fon)

[]
=3

o)

u

RB4
RBS
RB6
RB7

PIC16F1709

n 1k =

U1

RAQ/CSPDAT
RA1/ICSPCLK
= RA2
RA3MCLR/VPP
RA4

RAS5

[]
o

RCO
RC1
RC2

[]
jon

[]
~

[]
=

RC3
RC4
RC5
RC&
RCT

[
o

fen)

[]
oo

o)

2=] Rea
20
1221 pas
RES
RE7

PIC16F1709

n 1K

Figura 46. Solamente PB2 es presionado

En la figura 47, ambos pulsadores son presionados y se
puede apreciar como el pin RB4 estd rojo indicando que
hay 5V. El LED esta encendido y el motor girando lo cual
puede ser visto en el video.

+5V

U1

RAQ/ICSPDAT
RATICSPCLK
RAZ
RA3/MCLR/VPP
RA4

RAS

[]
=

RCO
RC1
RC2

ul=
[]
jon

[]
~

[]
1

RC3
RC4
RC3
RC8
RC7

[]
o

o)

[]
o

[
0

RB4
RBS
RB6
— RB7

PIC16F1709

10k

[]
10k
[]

Figura 47. Ambos pulsadores estan presionados

n 1k
L

Se ponen a disposicion del estudiante el esquema del
circuito para su simulacién en PROTUES y el video de la
simulacion para ver los pasos seguidos en la
verificacion.

e El esquema para el ejemplo #2 encuentra en
UNIDADII — PROTEUS — ESQUEMAS — UII_EJ_3.

e El video para el ejemplo #1 se encuentra en
UNIDADII — PROTEUS — VIDEOS - Ull_EJ_3

Resumen en este punto del camino

Se desarrollaron tres ejemplos relacionados con el
manejo de los puertos del microcontrolador
PIC16F1709. Los ejemplos han permitido presentar
algunos recursos tanto de hardware como de software.

En hardware fueron introducidos el resistor, el
pulsador, el diodo LED, el transistor BJT y el motor DC.

En software se presentaron varios operadores bdsicos
tales como el operador de asignacién(=), el operador
relacional “igual a”(==), los operadores légicos AND
(&&)y OR (| |). También fueron introducidos elementos
para la toma de decisiones como el if-else y para la
implementacion de lazos como el while.

Un formato de la estructura de un programa para un
PIC fue presentado.

La efectividad de los programas se utilizaron el
simulador de PROTEUS y el EASYPIC v7.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

31

Ejemplo #4: Banda Transportadora

1. Descripcion del proyecto

Se ha solicitado un sistema basado en wun
microcontrolador para controlar una banda
transportadora, movida por un motor DC, usada para
mover cajas entre dos puntos de la planta de
produccidn. El funcionamiento deseado es el siguiente:

Al presionar un pulsador (START) la banda debe ser
activada, MOTOR energizado.

e El MOTOR debera ser desenergizado cuando un
segundo pulsador (STOP) sea presionado o cuando
el numero de cajas alcance el valor indicado. Para la
deteccidn de las cajas debera utilizarse un SENSOR
capacitivo.

e Si el MOTOR se detiene debido a que se ha
alcanzado el nimero de cajas, se debera activar un
LED.

e Siel MOTOR se detiene debido a que se presiono el
STOP debera mantenerse el conteo y el proceso
debera continuar cuando se presione nuevamente
START.

e Para realizar un nuevo proceso debera presionarse
START.

2. Diagrama de bloques del proyecto
La figura 48 muestra el diagrama de bloques del
proyecto. El sensor es un nuevo elemento de hardware.

LED

O— _'.
START ql
*

o MicrocoNTROLADOR
STOP [II MOTOR

©

Figura 48. Diagrama de bloques banda trasportadora

[moTor

|DRIVER

3. Diagrama de circuito del proyecto

En la figura 49 muestra un sensor capacitivo en
configuracidén PNP. El sensor es alimentado con 24VDC
y, para poder utilizarlo con el microcontrolador es
necesario convertir los 24VDC a su salida a 5V para
satisfacer las caracteristicas de entrada de este.

+5V

START STDP
‘i’

60LT49TDId

Figura 49. Diagrama de bloques banda trasportadora

PROTEUS no cuenta con un modelo para este tipo de
sensor y para verificar la efectividad del programa
utilizaremos, para simular el sistema, la configuracién
mostrada en la parte izquierda inferior del circuito de la
figura 50.

+5V A

o
STARTd]
o

SOPI|
O

60LT49T2Id

GND =

1

BV TRANSISTOR

B
SENSOR g B
S="n s
© :

misex ms
10K @ Development

Figura 50. Diagrama de bloques banda trasportadora

4. Descripcion del hardware

El Unico elemento nuevo en el ejemplo #4 es el sensor
capacitivo. A continuacién, una descripcidn breve del
Sensor.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

e Sensor Capacitivo

Un sensor capacitivo es un dispositivo electrénico que
puede detectar sélidos o liquidos sin contacto fisico.
Para detectar los objetivos, los sensores capacitivos
emiten un campo eléctrico desde uno de los extremos
del dispositivo. Cualquier objetivo que pueda
distorsionar el campo eléctrico puede ser detectado

por un sensor capacitivo.

CONFIGURACION PNP

Figura 49. Conexiones Sensor capacitivo

En la figura 51, se utiliza la salida normalmente abierta.
Cuando la botella es detectada por el sensor en el cable
negro tendremos 24VDC y para poder utilizar el sensor
con el microcontrolador dicho voltaje debe ser
reducido a 5VDC.

24vVDC

Figura 51. Conexiones Sensor capacitivo

Durante el desarrollo del ejemplo, en la clase, se
presentardn mds detalles sobre los sensores
capacitivos.

5. Lenguaje Descripcion del Programa (PDL)
En el ejemplo #4 es necesario llevar el conteo de las
cajas movidas por la banda transportadora y debemos,
como se muestra en el PDL, declarar e inicializar una
variable para tal fin.

El PDL indica que el estado del pulsador START debe ser
indagado repetidamente y de eso se encarga el DO-
FOREVER. Si START es presionado se activa el MOTOR y
se apaga el LED. Si START no es presionado, el motor
debe permanecer desenergizado y el LED apagado.
Una vez presionado START y encendido el MOTOR, el
sistema entra a un lazo condicional, establecido por el
REPEAT — UNTIL, en el cual se interroga el estado del
SENSOR de forma repetida. Si el sensor es presionado

la variable conteo es incrementada en 1. El sistema
saldrd del lazo cuando sea presionado STOP o sea
alcanzado el niUmero de cajas establecido. Si la salida es
debido a que se alcanzo el numero de cajas deseado el
LED debera ser encendido y la variable conteo puesta a
cero.

Si el sistema sale del lazo porque STOP fue presionado,
el programa se ejecuta nuevamente a partir del DO
FOREVER interrogando el estado de START el cual debe
ser presionado para reanudar el proceso.

START
Definir variable conteo e inicializarla en cero
Configurar RA4, RA5 y RC7 como entradas
Configurar RAO y RB4 como salidas
Inicializar PORTA, PORTB y PORC en cero
Configurar oscilador interno a 4MHz
DO FOREVER
IF START es presionado THEN
Energizar MOTOR
Apagar LED
REPEAT
IF SENSOR es activado THEN
Incrementar variable conteo
ENDIF
UNTIL STOP presionado o Conteo igual a X
IF conteo alcanzé valor deseado
Encender LED
Conteo igual a cero
ENDIF
ELSE
Desenergizar MOTOR
Apagar LED
ENDIF
ENDDO
END

6. Programa del Proyecto
La solucion del ejemplo #4 requiere la utilizaciéon de una
variable.

Variables en C

Una variable no es mas que el nombre de una localidad
de memoria que utilizamos para almacenar datos. En C
el valor almacenado en la variable puede ser cambiada
durante la ejecucion del programa.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

33

Cada variable en C tiene lo siguiente:

1. Un tipo especifico, el cual determina el tamafio y
estructura de la memoria de la variable.

2. Elrango de valores que pueden ser almacenados en
la memoriay

3. El conjunto de operaciones que pueden ser
aplicadas a la variable.

El nombre de una variable puede estar compuesto de
letras, digitos, y el caracter guion bajo. Debe comenzar
con una letra o con un digito.

En dependencia de su alcance existen diferentes tipos
de variables y seran presentadas en el momento que
sea requerido. Algunos tipos de variables son los
siguientes:

Variables globales
e Variables locales

e Variables estaticas
e Variables externas

e Variables volatiles

Las variables deben ser declaradas antes de ser
declaradas e inicializadas antes de ser utilizadas. La
declaracion le indica al compilador que existe una
variable con el nombre y tipos especificados de forma
gue este pueda continuar con su trabajo de
compilacién sin necesidad de mas detalles acerca de la
variable.

Declaracion de una variable:
Tipo_de_dato nombre_variable;
Inicializacion de una variable:

nombre_variable=valor;

Se pueden combinar ambas cosas y presentar la
variable de la siguiente manera:

uint8_t nombre_variable = 0;

En el ejemplo #4 declararemos e inicializaremos una
variable que llamaremos “conteo” en la cual
almacenaremos el valor del nimero de cajas movidas
por la banda transportadora.

uint8 t conteo=0;

Lo anterior indica al compilador que existe una variable
entera de 8-bit (maximo valor es 255) llamada “conteo”.

En la primera parte del programa las palabras de
configuracién, el archivo de cabecera xc.h y las
constantes simbdlicas definidas con el objetivo de
hacer mas legible el cédigo.

2] T a config CONFIGI=0x03A4
9 g config CONFIG2=0x388

1a

IE $include

12

1z STRRT PORTAbits.RRS
14 STOE PORTARits.RR4
Is SENSCER PORTChits.BLCT
1s MOTOR PORTBbits.RE4
T LEL PORTAbits.RAD
1la M E

19 COFF 0

En la segunda parte podemos apreciar la definicion de
la variable conteo y la inicializacion de los puertos
utilizados en la solucién. lIgual que en los otros
ejemplos se utiliza el oscilador interno del
microcontrolador configurado a 4MHz (linea 34).

20 void main (void)
21 I

22 uintd_t conteo=0;
z3

24 TRISL=0x38;
Z5 ELE=0}

26 E=0;

27 E=0x00;
23 ENSELB=0;

z3 BORTBE=0;

30 TRISC=0x80;
21 ENSELC=0;

32 PORTC=0;

33

34| : O3CCCH T=0x63;

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

Para implementar el DO FOREVER utilizamos el loop tal
como se indica en el cédigo. El enunciado for(;;) en la
linea 36 indica que es un lazo infinito.

El REPEAT UNTIL fue implementado utilizando el do-
while loop. Las instrucciones en el cuerpo del lazo son
ejecutadas primero antes de chequear la condicién. Si
la condicidn es falsa, el do-while es ejecutado una vez.

do
{

statements;
Iwhile(condicion);

En la linea 44 el estado del SENSOR es chequeado y
mientras no haya una caja presente la variable conteo
no sera incrementada. El lazo sera ejecutado mientras
la variable conteo no alcance el valor indicado, 5 en el
ejemplo, o STOP no sea presionado.

4E while (SENSCR==1] ;

47 conteo++;

43 }

45 Jwhile {{conteo<5) && {STOP==0)):

51 if {conteo==5)
52 }

53 LED=UN?
54 conteo=0;

En la linea 51, si el valor de conteo establecido es
alcanzado el LED es encendido y la variable conteo es
puesta a cero.

7. Efectividad del Programa

La efectividad del programa sera verificada en primer
lugar utilizando el simulador PROTEUS. Luego sera
utilizado el EASYPIC v7. La figura 52 muestra el
esquema del circuito del ejemplo #5.

LED
220R

PIC16F1709 MOTOR DC

e @ 19 16
191 raoncseoar Reo £
START sTOP 42 ratncseeik Rot 2
o A ra2 R (4
— rasAiCTRVPR RG3
2 Ra¢ R4 [
RAS RCS =S
RCE [~
12 res RC7 -2 Qat
10k 10 12] pgs 2N3904
KM
10
10] per
L L 1K
- ‘ P | ey
— —
5V SENSOR
— ¢
o—e

i)
Figura 52. Esquema PROTEUS, banda transportadora

Para observar el incremento de la variable conteo
podemos agregar el cédigo requerido, después de
conteo++ en la linea 47, para ver el valor en los pines
<RC3:RC4> del PORTC.

PORTC=(0xFF) & (conteo);

El programa completo se encuentra al final del tema
Entradas y Salidas digitales.

e El esquema para el ejemplo #4 encuentra en
UNIDADII — PROTEUS — ESQUEMAS — Ull_EJ_4.

e El video para el ejemplo #4 se encuentra en
UNIDADII — PROTEUS — VIDEOS — UIl_EJ_4

Con el ejemplo #4 damos por finalizado el tema de la
unidad Il “Entradas y Salidas Digitales.” En el préximo
tema serd considerada la temporizacion y su
importancia en los sistemas embebidos.

AXAXAXXAXAAAXAAAXAXAAAAXAAXXAXAXAAXAXXAXXAXAXAAXXAAAXAAAXAAAAATAAAAXAAARAAAA AT AARX AR XA AAA XAk Tkkhkkkhhikikk

The tragedy in life doesn't lie in not reaching your goal. The tragedy lies in having no goals to reach.
Benjamin Mays

